Multi-agent Simulation Approach to Development
of Applications for Decentralized Tactical Missions

Antonin Komenda, Michal éép, Michal Péchoucek

{komenda, cap, pechoucek}@agents.felk.cvut.cz
Department of Computer Science and Engineering,
Faculty of Electrical Engineering,

Czech Technical University in Prague

Abstract—The development of control algorithms for tactical
missions is being impeded by the significant gap between the way
the artificial intelligence (A.l.) algorithms have been designed
and validated and the way the robotic applications for (high-
fidelity simulations) of tactical missions are being developed. On
the one hand, we have low-level robotic simulators (or even
robotic field testing). On the other hand, we have synthetic
— usually mathematically defined — environments used for the
design and formal testing of A.L. algorithms, e.g. randomly
generated problem instances, synthetic graph structures, logical
structures, regular grids, and similar.

In this work, we are proposing a development process and a
related software toolkit helping to narrow this gap. We use the
simulation-aided development approach and tailor it towards the
domain of tactical missions. The process is demonstrated on a
specific application scenario, employing a general software toolkit
Alite to glue together and adapt a number of A.L. algorithms,
originally designed as highly abstract.

I. INTRODUCTION

In recent years, we have been witnessing an intensive devel-
opment and deployment of various robotic systems. One of the
fastest-growing application domains for robotic systems are
the Intelligence, Surveillance, Target Acquisition, and Recon-
naissance (ISTAR) military missions performed by remotely
controlled robotic assets. Currently, these robotics assets are
controlled and coordinated exclusively by human operators.
The scalability of such approach is clearly constrained by
the limits of human perception and the limits of inter-human
interactions, similarly as in the other fields, where the human
element was superseded by computerized systems.

To address these constraints, there have been large invest-
ments in successive introduction of autonomous multi-robotic
systems. In such systems, the robotic assets use the distributed
artificial intelligence to coordinate their actions and cooperate
with each other. We will use the term Decentralized Tactical
Missions to denote the class of problems, where multi-robotic
teams carry out tasks in ISTAR missions [9], support disaster
relief operations or assist humanitarian missions [16], [10].

The fundamental challenge associated with the multi-robotic
application development is the deployment, validation and
verification of the developed algorithms on the real hardware.
Conducting experiments on real-world robots is expensive both
in terms of time and money. To reduce such costs, a simulation
of the target system can be introduced. On the one hand, the
experiments in a simulated world have the advantages of the

reproducibility, direct control over the simulated world, and
usually also the efficiency of experimenting (one can conduct
batch experiments). On the other hand, the fundamental draw-
back of the simulated-world experiments is that the accuracy
of the results depends on the fidelity of the world model em-
ployed by the simulation. Since the computational complexity
of the simulation grows as the function of the fidelity of the
underlying world model, high-fidelity simulations are often
impossible to achieve due to their prohibitive computational
complexity.

A. Problem Addressed

Nowadays, we can identify a significant gap between the en-
vironments typically used by the researchers in the theoretical
A.L. community and the environments used by the developers
of multi-robotic intelligent applications. On the one hand, we
have synthetic environments used for design and formal testing
of different kinds of A.L. algorithms (e.g., randomly generated
graphs, regular grids, etc.). One the other hand, we have
high-fidelity real-world-like robotic simulators (or even mixed-
reality simulations with real robots) used for a pre-deployment
evaluation of the proposed multi-robotic application.

In our approach, based on the simulation-aided design of
multi-agent systems methodology [15], the key motivation is to
bridge the gap between the theory and the practical application
of the existing A.I. algorithms. Under such motivation, we take
existing A.I. algorithms and starting from a low-fidelity, highly
abstract synthetic environment we incrementally decrease the
level of simulation abstraction to eventually arrive to a high-
fidelity real-world-like environment. During each step, we
adapt the used algorithms and validate the overall function
of the system.

To enable such an iterative process of algorithm design
and validation, we have to implement the algorithms on a
simulation platform that is modular and flexible enough to
provide seamless testing of the algorithms working on different
levels of abstraction.

B. Problem Domain

To demonstrate the key ideas of the proposed approach
based on simulation-aided development, we need a suitable
example domain. As our main motivation is to design and test
primarily algorithms of distributed artificial intelligence for

Figure 1.
Tactical Missions.

A visual impression of a simulated environment for Decentralized

teams of autonomous robotic assets, we will choose an ISTAR
military mission domain. Such a tactical domain gives us a
wide range of possibilities regarding both the available robotic
assets and the tasks the assets are expected to perform. As we
can see in Figure 1, the environment comprises a village, the
surrounding uneven landscape, models of the available robotic
assets, friendly persons and adversarial persons.

We consider two main groups of assets: unmanned ground
vehicles (UGVs) and unmanned aerial vehicles (UAVs). Addi-
tionally, on all levels of fidelity, we distinguish Conventional
Take-off and Landing (CTOL) UAVs and Vertical Take-Off
and Landing (VTOL) UAVs as their movement models fun-
damentally differ. To enrich the set of possible tasks for the
robotic assets, we also simulate the behavior of friendly (blue)
and enemy (red) forces forming teams and convoys. The tasks
carried out by the robotic team include patrolling of allied
convoys, capturing evading adversaries, low-level formation
maintenance, team support by observing local area, or wider
area surveillance.

In the following section we will explain the simulation-aided
iterative development process used to design, implement and
validate the above-presented multi-robotic application. The
details about the mission scenario, implementation and the
A.L techniques applied will be described in Section III. The
Section IV concludes the paper with final remarks.

II. DEVELOPMENT PROCESS

The main idea of the presented development process is
the following. At the beginning, we employ the classical
theoretical A.I. approach and design the desired algorithm in a
synthetic environment, using general mathematical structures
such as graphs and grids. However, right from the start, we
perform the experiments within the framework of the target
simulation system. This means that the interfaces between the
developed algorithm and the simulated environment must be
general enough to allow straightforward redeployment of the
algorithm to higher fidelity simulation environments. Further,
the synthetic environment should also define sufficiently gen-
eral interfaces to allow future integration with higher fidelity
simulation environments.

The requirement for general interface should not interfere
with the function and the internal principles of the developed
algorithm. In this step the simulation system acts purely as a
validation environment for the developed algorithm respecting
all its simplifying assumptions. After validating and verifying
the algorithm in its pure form, we can iteratively replace the
environment model (or possibly other parts of the simulation,
e.g., the mode of time evolution) and re-validate the algorithm
in an environment containing more aspects of the target
environment, i.e., having a lower level of abstraction. Occa-
sionally, after the abstraction of the simulation environment
has been decreased, the tested algorithm has to be conser-
vatively adapted. A conservative adaptation of an algorithm
is an adaptation that preserves all the desired mathematical
properties (e.g. soundness, completeness, etc.) for the price
of possibly newly added domain-specific constraints on the
validity of these properties. The final sum of such adaptations
results in a theoretically-backed algorithm applicable in highly
detailed simulated environments. The mathematical properties
of the algorithm stay valid under the constraints introduced by
the applied conservative adaptations.

In the next subsections we will describe the simulation
approaches we use for design and validation of the target
algorithms.

A. Simulation-aided Development

The simulation-aided development (SAD, as described in
[15] and [8]) is based on an iterative process of an approxi-
mated validation using testbeds of increasing fidelity. The goal
of the process is a successful, cost-efficient deployment of the
application on the target system, typically a hardware platform.
The iterative process of the application development is based
on the feedback from approximated testing. The approximation
is based on two dimensions: level of abstraction (how much is
the target system simplified) and scope of abstraction (which
parts of the target system are simplified). In result, the initial
system consisting of highly abstract algorithms is iteratively
transformed with increasing level of detail in each step into a
practical system deployable on a hardware platform.

As we stated earlier, the main objective of our work is
to design and experimentally evaluate various decentralized
algorithms for coordination of multi-agent teams. This leads
to the development of applications employing such algorithms
using the principles of SAD. In contrast to [15], our final goal
is not to deploy the algorithms on a hardware platform, but on
a high-fidelity simulation. This objective results in three basic
requirements on the simulation system.

Firstly, the simulator must be highly configurable to allow
for high flexibility in terms of a) simulation experiment
structure (number of agents, various types of agents, different
initial conditions, etc.) and b) executed scenario storyboard,
i.e., the mission to be executed. This requirement is related
mainly to the scope of abstraction in SAD, as we have to be
able to easily reconfigure parts of the simulation and switch
between different environment models and different models of
simulated entities.

Secondly, the experimental validation requires the results
from a large number of simulation runs. To ensure properties

|State Controller | | State Controller

Interface 7
Sensor
|::| Actuator
VNG

Sensor |Actuator| |Actuator|
Environment i) Y
State Storage | [State Storage

State V15V2y ey Vi Vii1sVis2s Vi

Figure 2. An example of a simulated environment, described by state
variables v1, ..., v, separated into two state storages. The state controllers
(e.g., agents) perceive and act in the environment through a set of sensors
and actuators respectively. One of the sensors and one of the actuators (the
top two) acts as a high-level abstraction for low-level ones (e.g., autopilot
actuator on top; yoke and pedals actuators on bottom).

of the tested algorithms during the adaptation process, the sim-
ulation platform has to facilitate straightforward construction
of experiment suites. Batch experiments represent a basic tech-
nique to a validate a wide spectrum of problem instances and
experimentally prove the desired properties of an algorithm.
Conditioned and dynamic experiments can be used for search
of pathological or otherwise important problem instances and
related results.

Finally, the simulator has to allow simulation on different
levels of details of the simulated environment and the sim-
ulated entities. The last requirement is closely related to the
level of abstraction in the SAD approach, as the algorithms
have to be allowed to work seamlessly among various levels
of abstractions to enable automated testing. Automated testing
ensures that the properties of an algorithm hold on all levels
of abstraction (analogically to automated testing as used in
classical software engineering).

B. Environment Modeling

A fundamental part of the simulation platform is a model
of the virtual environment, which comprises the description
of the simulated state and the state controllers animating the
simulated world. The state controllers are driven by a time
management component.

We represent the state of environment as a set of special
containers called state storages (see Figure 2) . Each state
storage is responsible for holding a specific part of the
current state, i.e., all the state storages together constitute
the full description of the current state of the environment.
The partitioning of the simulated state into the state storages
can be chosen arbitrarily, however the two most commonly
used approaches to the state partitioning are the following: a)
over the entity types or b) over the data types. The former
uses one state storage per simulated entity type, i.e., a state
storage contains the set of all state variables for all entities
of one type (e.g., CarStorage, HelicopterStorage,
StreetStorage). The latter is based on a data-
type describing the state variables (e.g., GraphStorage,

KeyValueStorage, BTreeStorage). In this case, one
state storage contains all state variables of the same data
structure and utilizes common properties of such structures,
e.g.,aKeyValueStorage can provide algorithms for hash-
based caching, which can be utilized both for key-value
storage of entity properties (size, weight, current fuel status)
or key-value storage of an area weather status (keys represent
area codes, values current weather conditions).

State controllers constitute the functional part of the en-
vironment, together describing the whole mechanics of the
environment. The state controllers interact with the state of
the environment indirectly through a set of universal interfaces
called sensors and actuators. A sensor is an interface through
which a particular part of the environment state can be read.
Analogically, an actuator is an interface used to change a part
of the environment state. Sensors and actuators are the only
components permitted to directly access the state storages.

There are no a priori restrictions on the controllers and
the controlled state, i.e., a controller can be a mechanism
simulating physical laws of the environment (e.g. application
of the gravity force to all simulated entities having mass), a
simple reactive algorithm (e.g. simulation of swarm systems),
or a highly deliberative algorithm (e.g. cognitive cooperating
agents). Elements of the environment without any controllers
are fixed in their initial state. These are e.g., the shape of the
landscape, buildings, bridges etc.

In the tactical mission environment, the sensors and actu-
ators are of different levels of complexity. There are basic
sensors informing the controlling agents about their position in
the simulated world (simulation of a on-board/personal GPS).
The basic visual sensor simulates perception of other simulated
entities in close proximity. The complex visual sensor emulates
a system for automated friendly-or-foe detection using 3D
algorithms to simulate visual occlusions caused by buildings
and topology of the map.

To enable high-level control of UGVs, which abstracts away
from the physical reality of the environment, an actuator
for discrete-time movement of simulated ground vehicles on
a street graph can be used. To enable various levels of
abstraction, the high-level control algorithms use low-level
actuators to steer the cars between waypoints on the street
map (e.g., junctions) based on a state-of-the-art technology
for simulated physics. Such an actuator supports not only
simulated continuous motion of the entity in space, but also
discrete motion on the graph-based representations. Such
an approach to the design of simulated environment led to
significant reduction of implementation, as well as debugging
cost of the individual experimental scenarios on different
abstraction levels. Moreover, it allowed us to implement a
simulation model employing event-based time management.
Unlike discrete time ticks or turn based time management
methods, the event-based simulation allowed us to decouple
the simulation time from the real-world “wall” time. The main
advantage of this approach is that the time periods containing
no simulation events can be skipped and thus the simulation
runs execute significantly faster.

The requirement to implement aircraft performing close-
up tracking of mobile targets, such as adversaries and cars,

resulted in a need to incorporate aircrafts reactively controlled
using low-level actuators, be it conventional fixed-wing planes
(CTOLs), or helicopters (VTOLs). Such UAVs are able to
change their flight trajectory in a reaction to changes of
movement patterns performed by the ground target. In the
case of fixed-wing aircrafts, which cannot stop in mid-air,
this problem results in a need to perform relatively complex
flight patterns, such as various types of loops over the target.
Together with a need to implement a fine-grained physical
dynamic feedback control of helicopters respecting a realistic
model of their physical movements, this led to a requirement
to adapt the simulator to a much finer grained time resolutions.
In effect, reactive CTOL actuators use yaw, pitch and velocity
as parameters and limits on minimal and maximal values,
while VTOL actuators uses cyclic and collective rotor blade
tilt for the main rotor and tilt for tail rotor using a simplified
dynamic model of a VTOL. The higher level actuators such as
a straight-flight autopilot and a waypoint autopilot make use
of the lower level actuators and offer a high-level interface for
more abstract control algorithms.

C. Simulation Assurances

While abstract mathematical algorithms are well analyzed
and strongly statistically validated on experiments, it is not
so easy to run (and debug) replicable experiments in com-
plex, high-fidelity robotic simulations with lots of dynamic
unpredictable behaviors of the entities and emergent behav-
ior phenomena. In our approach, the important aspect of
simulation development is to maintain the reproducibility of
simulations with the increasing level of detail. Large-scale
simulations involve various aspects of non-determinism which
can lead to non-reproducible simulation runs. Such factors
include parallel and random processes, as well as limitations of
the underlying hardware, such as CPU scheduling or memory
swapping, etc. To ensure reproducibility of experimental runs,
we carefully considered and implemented the concept of in
vitro simulation. That is, a simulation which controls all the
aspects of the modeled system, or carefully accounts for those,
which were abstracted away from. In particular, this means
that the simulator has to have an ability to suspend and later
resume the simulation process. Furthermore, it should have an
ability to speed it up, or slow it down in response to e.g.,
resource utilization of the underlying hardware, so that race
conditions and different results of process scheduling do not
affect the simulation outcome. Finally, the random processes
involved in the simulation must be also under the control of
the simulator so that the same sequences of random events are
generated in two independent runs of the same simulation.

The need to execute large numbers of reproducible exper-
iment runs turned out to hinge on the speed of simulation
run execution and ability to make the runs deterministic on
demand. To tackle this issue, we departed from the exclusive
model of centralized discrete time ticks and implemented
event-based simulation mechanism [1]. This allows the system
to disrespect real-time constraints of the wall clock ticking
mechanism and run the simulation as fast as possible given
the available computational hardware resources (memory and

Interface Environment

State Controller

| GoToNodeActuator |——>|

DiscreteCarStorage |

| MoveInDirectionActuator |———| InterpolatedCarStorage |

|SteerAndAccelActuator |-—>| PhysicalCarStorage |

Figure 3. State storages and related actuators for description of car models
on three levels of abstraction.

CPU). However, at the same time the resulting simulator
still features the ability to run at real-time simulation speed
for demonstration purposes. Additionally, we used simulator
enabling complete synchronization of the simulated processes
and thus facilitated high level of control over the simulated
environment.

D. Example of a Multi-level and -scope Abstractions

The model based on state storages, universal sensors,
universal actuators, and loosely coupled controllers offers a
valuable property critical for the SAD approach. The property
is that the presented model is highly flexible, as it allows a
programmer to add and remove simulated entities easily (scope
of abstraction). Further, it supports easy switching between the
different types of simulation modes (level of abstraction).

For instance, we can define three types of
abstraction for car entities used in the simulation
and represent them by three separate storages

DiscreteCarStorage, InterpolatedCarStorage,
and PhysicalCarStorage. The first one defines the
current state of a car by a node on the street graph. The
second one enriches the by-node state with a position
vector (z,y) representing the position of the car on
a 3d mesh representing the ground surface. The last
abstraction extends the state further with a description
of a fully dynamic state comprising position (x,y,z2),
velocity (z,y, %), acceleration (Z,4,2) and the rotational
components (@, 0, 1), (¢, 0',1/.1), (g, g, 1/1) To control the state
stored in these state storages, we can use three actuators
GoToNodeActuator, MovelInDirectionActuator,
SteerAndAccelerateActuator (listed in an order
reflecting the controlled state storages). One can implement
an actuator to control the respective state storage directly,
but it is also possible to implement an actuator to control
storages indirectly through other actuators. In practice,
such coupling will result in an algorithm that recursively
translates higher level control to lower level control. For
example, the way-point car actuator will control the car using
the following control sequence: GoToNodeActuator
— MoveInDirectionActuator — SteerAnd-

AccelerateActuator (see Figure 3). As we can see
now, we can interchangeably use any of the presented state
storages as long as the controlling algorithm uses only the
top-most actuator, i.e. GoToNodeActuator. In effect, we
can design a high-level algorithm controlling a car only on
node-to-node basis using GoToNodeActuator, but we

can immediately test it in all prepared levels of abstraction
(discrete, interpolated, physical).

We also define simulated entities representing the ground
troops. Here, we create only two levels of abstraction rep-
resented by two state storages DiscreteTroopStorage
and DirectedTroopStorage. The first level of abstrac-
tion is similar to DiscreteCarStorage (representing the
position of a trooper in terms of street graph nodes), the
latter describes the ground position and the direction (z, y,)
of a trooper. We create a WalkToNodeActuator and
MoveAndTurnActuator. We cannot reuse GoToNode-—
Actuator in place of WalkToNodeActuator since the
car actuator uses a different control logic to simulate the
movement (although the input parameters and the results are
identical for both the actuators — both the cars and the troopers
move from one node to another — for the car, the duration of
the movement can be computed from the engine power, for the
trooper the duration of the movement can be, for instance, a
function of the weight of the carried personal gear). From
this point, we have a separate component for a car and a
separate component for a trooper in the model of environment
(analogical to the scope of abstraction in SAD). In a simulation
run, we can use these components separately (just cars or just
troops) or we can mix them together (e.g. troops following a
car). Moreover, we can mix different levels of abstraction of
both components (for instance, an interpolated car representing
a convoy is followed by physically simulated cars representing
UGVs accompanied by troops having position and direction
representing the support squad protecting the convoy against
the discrete adversaries blocking junctions on the street map).

III. APPLICATION SCENARIO

After proposing an approach to the development of multi-
agent applications for decentralized tactical missions using
simulation-aided development process, we present a specific
application scenario in which the application was demon-
strated. The application is a multi-agent simulation of a het-
erogeneous cooperative mission with opponents taking place
in a dynamic environment. This section presents a detailed
description of the mission, implementation details of the un-
derlying system and a summary of algorithms used to control
the behavior of agents. In particular, we will emphasize the
role of different levels of abstraction used during the design
and evaluation phases of the development process.

A. Tactical Mission

The mission takes place in a desert village surrounded by
a hilly landscape. The village is described in terms of a
number of static and dynamic objects. There are three types of
static objects: buildings, bridges and a 3D mesh representing
the ground. All the static objects act as obstacles for the
dynamic objects and cause occlusions for the visual sensors.
Additionally, there are virtual static structures: a street graph
representing a navigation map of the village and forbidden
zones representing the areas, where the dynamically simulated
entities are not allowed to be (e.g. vicinity of the buildings,
cliffs, edges of the bridge etc.). These virtual structures can be

sensed by the entities, but unlike the physical obstacles, the
agents can ignore them.

All the dynamic objects in the environment are denoted
as simulation entities. A simulation entity is a simulated
embodiment with a related controlling agent. In our simulated
environment, there are no dynamic objects not deliberately
controlled (e.g., moving obstacles, falling objects, etc.). The
simulation entities can be divided into three main groups: air
vehicles, ground vehicles, and simulated persons. There are
three types of air vehicles: Aesir Vidar VTOL UAYV, Saab
Skeldar VTOL UAYV, and Procerus CTOL UAV. We have two
types of ground vehicles: MDARS UGV and a generic army
cargo truck. And finally, the simulated persons can represent
the allied troops (blue forces) or the adversaries (red forces).

The mission to be fulfilled is the evacuation of a VIP hostage
from a safehouse in the center of the village and escort of the
VIP to an extraction point at the end of the village. During
both the ingress and the regress phase of the mission a highly
valuable target (red forces) can be spotted. If such a situation
occurs, the team (allied cargo truck and blue forces) splits and
a part of the troops has to capture the evading target. There
are unknown adversaries (red forces) operating in the village,
who can endanger the members of the allied team. These have
to be spotted as soon as possible to minimize the risk of attack
against the team. The robotic support team (Vidars, Skeldars,
Proceruses, and MDARS) autonomously provides backing to
the ground troops by performing wide and close surveillance
of the area, street and junction covering and others.

B. Implementation

The above presented multi-agent application has been im-
plemented using an in-house software toolkit Alite, which
allowed us to follow the principles of the simulation-aided
development (SAD) approach.

Alite! [’erlat] is a software toolkit simplifying implementa-
tion and construction of (not only) multi-agent simulations and
multi-agent systems. The objectives of the toolkit are to pro-
vide a highly modular, flexible, and open set of functionalities
defined by clear and simple APIs supporting rapid prototyping
and fast implementation of multi-agent applications, mainly
focusing on highly scalable and complex simulated environ-
ments. The guiding principles underlying the Alite design are
1) modularity, so that the system does not commit a developer
to a specific definition of concepts such as agent, environment,
etc. and ii) composability, so that the various components of
the toolkit can be put together in a rapid and flexible manner.
In result, Alite can be seen as a collection of highly refined
functional elements providing clear and simple APIs, allowing
a programmer to put together relatively complex multi-agent
simulation scenarios rapidly. In following lines, we explain the
main characteristics and distinguishing features of Alite.

Alite agents have access to composable interfaces to the
environment (sensors and actuators), while their internal
decision-making process is not bound to any a priori phi-
losophy. Additionally, they can make use of various types

Uhttp://agents.felk.cvut.cz/projects#alite

of communication middleware interfaces allowing a devel-
oper to model various types of intra-agent communication
(synchronous, asynchronous, peer-to-peer, broadcasting, multi-
casting, etc.). Further, Alite comes with libraries including
various types of planners (reactive, deliberative) and multi-
agent solvers (e.g., task allocators, solvers for distributed
vehicle routing problem, etc.).

By its compositional nature, Alite provides means for both
rapid prototyping, as well as high-level of elaboration toler-
ance of the implemented systems. E.g., once a simulation, or
a functional multi-agent system is put together from various
components, application-level customizations and proprietary
domain-specific mechanisms, it is very easy to replace one
stock planner, or multi-agent solver by another one, as far as
they share the underlying assumptions for their use.

Alite addresses the problem of MAS platform resilience in
the face of the need to incorporate various a priori unknown
future requirements by variability in composition of functional
elements. The number of possible combinations allows for
construction a wide spectrum of structurally different multi-
agent applications. This feature distinguishes Alite from the
pre-designed frameworks such as [5], [17], [2]. As multi-
agent application’s requirements evolve, the requirements on
the agent platform itself are changing. Alite does not provide
“a single platform for all”, but rather offers an efficient way
to build a platform that fits the specific needs of the MAS
application under development. The application can make use
of one or more functional elements available in Alite toolkit.
As of writing this paper, Alite provides the following packages:

e common-event-queue: a general implementation of
a temporal event queue and temporal events (can be used
for event-based simulations, agent message queues, etc.).

e common-entities: a general description of any entity
in the system. An entity is defined only by its identity, i.e.
name (represent agents, simulated embodiments, etc.).

e common-capability-register: a general imple-
mentation of a simple register of possible capabilities
provided by entities (usable for directory services, register
of simulation components, etc.).

e communication: a component providing communica-
tion interfaces and message transport layers (includes
direct and asynchronous message transport, protocol ab-
straction, abstraction of communication modes, etc.)

e initialization: a component defining basic inter-
faces for initialization scripts and configuration (includes
a Groovy-based config-reader)

e environment:acomponent of interfaces defining basic
elements for creation of simulated worlds (includes state
storages and base classes for implementation of sensors
and actuator).

e simulation: a component providing a basis for event-
based simulations (based on common-event-queue
extended with temporal control).

e visualization: a set of components for visualisation
of simulation outputs (includes 2D visualization, 3D

Interface Environment

State Controller State Storage

Figure 4. A full control loop in a typical Alite simulation architecture.

visualization based on JME?, wrapper to Google Earth?,
and others).

From the evaluation of basic multi-agent algorithms, it is
just a small step to large-scale multi-agent simulations. Most
of the general-purpose multi-agent platforms offer no sup-
port for implementation of complex simulated environments
On the other hand, the simulation-oriented platforms lack
support for implementation of complex agent behaviors and
communication protocols. Alite stays in between these two
approaches enabling an application developer to implement
a multi-agent simulation platform targeting both mentioned
aspects. Classical approach to multi-agent modeling as in-
troduced in [7] and implemented e.g. in [17] incorporates
simulation into the multi-agent system as a special agent.
The simulation agent represents the simulated environment,
entities and their interactions with the environment. The agents
control their simulated bodies in the environment transparently
using inter-agent communication. The simulation agent is
responsible for the consistency of the simulated environment
and synchronization of the entities. The reasoning processes of
the individual agents run in separate, independent threads, the
architecture is therefore suitable for parallelization and real-
time simulations. On the other hand, the large-scale multi-
agent simulation platforms such as Mason [13] or NetLogo [6]
facilitate construction of large environments consisting of
micro-behaviors of thousand individual (usually simple rule-
based) agents that give rise to complex macro-behaviors.
Alite simulation adopts the in vitro principle, which repre-
sents a compromise between the two presented approaches.
Classical simulation architecture is driven by the agent point
of view (i.e. the agents live in the platform and simulation is
merely one of the agents). The in vitro multi-agent simulation
architecture is driven by the simulation itself (similarly to
the large-scale simulation platforms). The agents’ reasoning
processes, the agents’ bodies in the environment, function
of actuators and sensors — everything is controlled by the
simulation. Thanks to in vitro design, one does not have to
explicitly distinguish between the behavior of an agent (i.e.
agent’s brain) and the behavior of an entity (i.e. agent’s body).
This approach allows a programmer to control all parameters
(even those that cannot be controlled in the classical architec-
ture, such as the computational power available to the agents’
reasoning processes, the characteristics of the communication
links between the agents, etc.). The simulation can be fully

Zhttp://jmonkeyengine.com/
3http://earth.google.com/

W

Environment
Simulator =

| 3D VisF

JME

Lo { Init (Config & Experiments) ‘

JVM & Scripting

Figure 5. High-level overview of the simulation system for Decentralized
Tactical Missions utilizing Alite toolkit.

deterministic, featuring simulated, controlled non-determinism
if needed. Finally, the in vitro design prevents the simulation
from being affected by the disruptive events occurring on the
host computer, such as unbalanced processor load, unevenly
distributed computation power to agents, etc.

Simulated environments in Alite consist of building blocks
introduced in Section II-B: state storages, actuators, sensors,
agents (i.e. the agents reasoning algorithms implemented
merely as a specific type of Alite entity) and an event
queue representing the time management component. A typical
full control loop (see Figure 4) consists of sensor —
state controller — actuator — state storage
— sensor — ...cycle. The state controller can be any Alite
entity (i.e., an agent, a reactive controller, etc.) representing
behavior of an element in the environment (e.g. a pilot agent,
a traffic light, wind, a growing three, etc.).

The power of Alite’s loosely coupled design has been tested
during the construction of the multi-agent simulation system
targeting the proposed domain of distributed tactical mission.
A number of custom-designed domain specific components
integrated with the Alite infrastructure components enabled us
to transparently combine i) highly abstract multi-agent game-
theoretical algorithms synthesizing strategies for patrolling of
the allied forces and pursuit of intelligent evading targets,
ii) the team member behavior generation based on continual
planning, plan repairing and formation movement techniques,
and iii) complex environment simulation, such as physics of
rigid-body models based on JBullet physical simulator®.

Our previous Alite-backed multi-agent application for the
domain of multi-agent cooperation and coordination in com-
plex urban environments has been presented in [19]. Thanks
to Alite’s highly modular architecture, there were minimal
implementation overheads during the implementation of ex-
tended behavioral models employing special agent-oriented
programming languages [18].

Based on the experience from our work with Alite,
the final architecture of the system was designed as de-
picted in Figure 5. The agent control (AgentCtrl) com-
ponent represents the agent’s decision making algorithms.
Agents act in an Environment that consists of entity-

JBullet
Library

4for more information on the
(http://jbullet.advel.cz/) —
(http://bulletphysics.org)

physics simulation see
a Java port of Bullet Physics

type state storages (VidarStorage, SkeldarStorage,
MdarsStorage, etc.) using the respective sensors and ac-
tuators utilizing the multi-level and multi-scope abstraction
principle (see Section II-B and Section II-D). The dynamics
of the Environment is implemented using event-based full
control loops (see above) backed by the event queue, together
forming the main part of the Simulator. Further, the state
of the environment (in particular, the positions of the entities)
is visualized by 2D and 3D Vis-ualizators. Some of the
important mental states of the agents’ are also visualized
(e.g. intentions, plans, an agent’s prediction of the future,
etc.). Finally, all the presented components of the system are
initialized by the Init-ialization component, used to setup the
entire experimental infrastructure via flexible configuration of
the experiment suites (as proposed in Section II-A). Alite is
written in Java language and other JVM-compatible languages
(particularly Groovy> and Clojure®).

C. Algorithms and Evaluation

To demonstrate the proposed development process, the
following section will discuss the design, verification and
validation procedure of four A.L. algorithms that have been
employed in the example evacuation mission.

1) Adversarial planning: patrolling of mobile targets: The
protection of the ground team against the attacks from the
adversaries is one of the objectives of the evacuation tactical
mission. The protection was carried out by a small team of
aerial vehicles. For the patrolling vehicle, it is vital not to
execute a predictable movement strategy. If it acts predictably,
the opponents could optimize their behavior against such
strategy and attack the convoy in the worst timepoint, e.g.,
when the patrol just left the convoy it protects. The solution
is based on randomized strategies, which maintain a certain
average frequency of visits of each protected ground team.
The algorithm computes optimal strategies for protecting the
mobile targets in adversarial environments. The basic underly-
ing assumption driving the research was that the opponent is
able to observe the patrol and capable to attack in any moment
when the target convoy is unprotected. Given a map of an
urban environment, positions and plans of the convoys and
a mobility model of opponent units, the specific goal was to
find the optimal randomized strategy for the patrol, which min-
imizes the probability of attacks on the protected teams. More
information about the underlying game-theoretical algorithm
for patrolling can be found in [3], [4].

The design, development and validation of the algorithm
had four steps (see Figure 6). In the first step, (a) the
algorithm was analytically designed, based on state-of-the-
art solutions, and the optimality guarantees were shown on
synthetic graph structures. In the next step, (b) the algorithm
was verified on targets traversing an urban area based on a
graph representing topology of a real village. The patrolling
assets were simulated as idealized models of a CTOL UAV
using maneuvers from a discrete tessellated grid. Afterwards,
(c) the idealized model of a CTOL airplane was replaced by

Shttp://groovy.codehaus.org/
Shttp://clojure.org/

(c)

Figure 6.

(d)

Levels of abstraction used for design, verification and validation of the algorithm solving the problem of mobile target patrolling: (a) discrete

movement on a synthetic graph structures, (b) discretized movement of CTOL airplanes using tessellated maneuver pattern, (c) movement based on a simplified
dynamic model of Skeldar VTOL UAYV, and (d) an integrated scenario where a VTOL UAV patrols ground tactical teams in the final high-fidelity simulator.

a dynamic model of a Skeldar VTOL UAV. In the final phase,
(d) a Skeldar UAVs running the optimal patrolling algorithm
was used to provide protection for the ground allied teams in
the evacuation mission.

For the case of the patrolling algorithm, all the adaptations
towards more concrete levels of abstraction, i.e., into envi-
ronment models having higher fidelity, were only a matter of
slight adjustment of the algorithm implementation and posed
no crucial problems. The most likely explanations behind the
straightforward development process is the low computational
complexity of the algorithm (the set of applicable strategies
was precomputed) and a fundamental temporal flexibility in
execution of such strategies.

2) Adversarial planning: modeling smart targets: The pur-
suit of an evading target was another subgoal of the evacuation
tactical mission. The target was considered smart, i.e., a target,
who actively monitors its surroundings and acts accordingly.
Smart targets are aware of the fact that they are being tracked
and actively try to avoid the tracking unit. Similarly, we con-
sider trackers to be aware of the fact that the tracked targets are
aware of their activities and try to act in the best response to
the whole setup. Therefore, we need a formal game-theoretical
model of a pursuit-evasion scenario with heterogeneous teams
of agents and a resulting algorithm. The concrete goal of the
algorithm was to control a team of assets (pursuers) attempting
to detect, track and finally capture a number of smart targets

(evaders) so that they act in the optimal way even against
prospectively optimal evaders. Details of the used techniques
can be found in [3], [12].

Analogically to the first mentioned algorithm, the analytical
work and the reuse of state-of-the-art techniques led to an
algorithm optimally controlling both the pursuing and evading
agents involved in the game (see Figure 7). Firstly, (a) the
theoretical analysis and theoretical guarantees of the algorithm
were studied out using artificial and randomly generated
graphs. After that, (b) the algorithm was experimented on the
village street map, where pursuers and evaders move discretely
in constant time steps. Finally, (c) the same algorithm was
integrated into the evacuation mission scenario.

The adaptation of the algorithm among the different abstrac-
tion levels also turned out to be straightforward. This is due
to the any-time property of the experimented algorithm.

3) Multi-agent re-planning and plan repair: Since tactical
environments are typically highly dynamic, any planning al-
gorithm has to consider failing actions. The more dynamic
an environment is, the more actions of a plan fail. Classical-
style planning is currently one of the most used techniques for
automation of activities of intelligent agents. However, such
plans are not robust in dynamic environments. The standard
solution, in such cases, is to simply re-plan the agent’s
behavior from scratch and continue its actions according
to the new plan. However, we have designed and adopted
techniques preserving parts of the old plans — plan repair. The

€)) (b)

Figure 8.

(c)

Levels of abstraction used for design, verification and validation of the algorithm providing plan repairing ability for robotic assets: (a) synthetic

environment used for the theoretical design, verification and validation of the plan repairing algorithms, (b) adaptation of the algorithm to a simplified dynamic
model of Vidar VTOL UAVs providing support for the ground team (white lines represent the initial plan, yellow track represents a repaired plan), and (c)
example of reconnaissance actions carried out by the Vidars in the integrated mission.

(a)

(b)

Figure 7. Levels of abstraction used for design, verification and validation
of the algorithm solving the problem of a smart target pursuit: (a) example
of a graph structure used for analysis of pathological instances of the pursuit-
evasion game, (b) discrete movements based on a graph representing map
of the streets, and (c) integrated scenario using interpolated movement for
two blue-force troops (the blue arrows) dismounted from a team cargo truck
pursuing high-value target adversary (the orange arrow).

main motivation is based on the assumption that the costs
of communication in multi-agent teams is not negligible and
therefore the algorithm should minimize it. Details about the
employed plan repairing algorithm can be found in [3], [11].

The multi-agent plan repairing algorithms were based on
classical plan repairing techniques and formally verified. The
algorithms were used to control the Vidar VTOLs, which
provide support for the ground team (see Figure 8). First tests
and experiments were carried out in a synthetic grid-based

environment (a) based on a classical state-of-the-art planning
domain crates-cranes. Adaptation of the plan repairing algo-
rithm to the VTOLs in the domain of tactical support (b) led
to an introduction of a restricting condition on the depth of
the search tree to limit the computational complexity of the
search. Finally, (c) the constrained version of the algorithm
was used in the integrated mission to provide visual support
for the team. The plan-repairing mechanism is solving the
problems caused by the unpredictable movement of the troops.
The preconditions of the actions contained terms modeling the
team has to be properly covered, and thus the initial plan has
to be appropriately repaired during its movement.

During the adaptation process of the plan repairing al-
gorithm, we have faced the problem with computational
tractability and thus the maximum depth of the algorithm’s
search tree had to be limited. Such a change conditioned the
soundness and completeness of the algorithm to only a short
time horizons (equivalent to the length of the resulting plans).

4) Coordination and teamwork: Reactive planning is an
alternative approach dealing with the dynamism of the en-
vironment, resulting plan failures and unexpected events. It
allows a programmers to manually specify behaviors of agents
in a rule-based language so that an agent’s (robot’s) action
selection becomes efficient. The techniques we explored com-
bined existing agent programming language Jazzyk[14] and
a formalism for the specification of inter-agent coordination.
These techniques were used in the evacuation mission to
coordinate movement of the allied troops in formations and
more importantly transitions among such formations. For
more information about reactive multi-agent programming
techniques used consult [14], [3].

The formation patterns were designed as short algorithms in
an agent-programming language Jazzyk (see Figure 9). There
were only two levels of abstraction used for verification and
validation of the algorithms: (a) analytical design and synthetic
testing of the patterns and (b) deployment of the algorithms
in form of Jazzyk language programs and the related Jazzyk
interpreter on the simulated troops.

The adaptation process involved mainly the implementation
of glue code that specifies interactions between the different
knowledge-base structures. Since Jazzyk language has been

.
... _»..._> ... (a)

[Frames per second: 16

Figure 9. Levels of abstraction used for design and verification of multi-agent
coordination algorithms: (a) an analytical design of an example coordination
pattern, and (b) implementation of the pattern in the evacuation mission
simulation.

design as highly elaboration tolerant, the patterns were easily
tweaked to fit the rich simulated environment and the nature
of its dynamics, e.g., recovering from collisions with obstacles
and timing of the movements to synchronize with the other
components of the system.

IV. FINAL REMARKS

One can come up with various approaches to development
of multi-agent applications for decentralized tactical missions.
However, according to our experience such problems are
typically so complex, that the first-shot approaches usually fail.
We are providing a comprehensive description of a well-tried
concept based on simulation-aided development methodology
specifically focusing on the domain of tactical missions in
dynamic environments.

We provide details to reproduce the process using any
software solution available and suitable for the problem.
Moreover, we give an overview of a software toolkit Alite and
the way it could be customized towards a simulation system
that is suitable for the simulation-aided development process.

Finally, we conclude the work with an example multi-agent
application employing game-theoretic, plan repair and multi-
agent coordination algorithms. The application demonstrates
the use of such algorithms to control a robotic team that
supports simulated troops in an evacuation tactical mission.

The most important direction for a future work is to pro-
vide well grounded processes along with software supporting
automated, or at least semi-automated, design of the multi -
level and -scope abstractions. Currently, all the levels have to
be designed by hand and implemented on one-after-another
basis, however, as shown in Section II-D, there are emerging
patterns in the design of agent-to-environment interfaces and
state descriptions. Exploitation of such patterns could allow
more efficient development and faster advancement through
the various abstraction levels towards the target systems.

ACKNOWLEDGEMENTS

This work was supported by U.S. Army Grant W911NF-
10-1-0112 and by Czech Ministry of Education, Youth and
Sports under Grant MSM6840770038.

The authors’ organizations and research sponsors are autho-
rized to reproduce and distribute reprints and on-line copies
for their purposes notwithstanding any copyright annotation
hereon. The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either ex-
pressed or implied, of other parties.

REFERENCES

—

[1] Jerry Banks, John Carson, Barry L. Nelson, and David Nicol. Discrete-
Event System Simulation (4th Edition). Prentice Hall, December 2004.

[2] F. Bellifemine, G. Caire, A. Poggi, and G. Rimassa. JADE wp, 2003.

[3] Branislav Bosansky, Michal Cap, Antonin Komenda, Viliam Lisy, Peter

Novak, and Pechoucek Michal. Tactical AgentScout 2: Deliberative and

reactive planning in adversarial environments — Final Report, April 2011.

Branislav Bosansky, Viliam Lisy, Michal Jakob, and Michal Pechoucek.

Computing time-dependent policies for patrolling games with mobile

targets. In Proceedings of The Tenth International Conference on

Autonomous Agents and Multiagent Systems (AAMAS 2011), May 2011.

[5] Cougaar project website. http://www.cougaar.org/.

[6] M. Dickerson. Multi-agent simulation and NetLogo in the intro. comp.

science curriculum. J. Comput. Sci. Coll., 27:102—104, October 2011.

Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi.

Reasoning about Knowledge. MIT Press, 1995.

Michal Jakob, Michal Péchoucek, Peter Novék, Michal Cép, and Ondra

Vanék. Towards incremental development of human-agent-robot appli-

cations using mixed-reality testbeds. IEEE Intelligent Systems, Special

Issue on HART: Human-Agent-Robot Teamwork, 2011. (accepted).

Winnefeld A. James and Frank Kendall. Unmanned Systems Integrated

Roadmap FY2011-2036, 2011.

[10] A. Komenda, J. Vokrinek, M. Pechoucek, G. Wickler, J. Dalton, and
A. Tate. I-Globe: Distributed Planning and Coordination of Mixed-
initiative Activities. In Proceedings of Knowledge Systems for Coalition
Operations (KSCO 2009), March-April 2009.

[11] Antonin Komenda and Peter Novak. Multi-agent plan repairing. In
Decision Making in Partially Observable, Uncertain Worlds: Exploring
Insights from Multiple Communities, Proceedings of IJCAI 2011 Work-
shop, pages 1-6. AAAI Press, 2011.

[12] Viliam Lisy, Michal Pechoucek, and Bosansky Branislav. Anytime
algorithms for multi-agent visibility-based pursuit-evasion games. In
Proceedings of the Eleventh International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2012), 2012 (accepted).

[13] S. Luke, C. Cioffi-revilla, Panait L., and Sullivan K. Mason: A new
multi-agent simulation toolkit. In University of Michigan, 2004.

[14] Peter Novék. Jazzyk: A Programming Language for Hybrid Agents
with Heterogeneous Knowledge Representations, pages 72—87. Springer-
Verlag, Berlin, Heidelberg, 2009.

[15] Michal Péchoucek, Michal Jakob, and Peter Novak. Towards simulation-
aided design of multi-agent systems. In Post-proceedings of the eighth
international workshop on programming multi-agent systems, ProMAS
2010, LNAIL Vol. 6599. Springer-Verlag, 2010. (in print).

[16] C. Siebra and A. Tate. I-Rescue: A Coalition Based System to Support
Disaster Relief Operations. In Proceedings of The Third International
Association of Science and Technology for Development (IASTED)
International Conference on Artificial Intelligence and Applications
(AIA-2003), September 2003.

[17] David Si§lak, Milan Rollo, and Michal P&choucek. A-Globe: Agent
platform with inaccessibility and mobility support. In Matthias Klusch,
Sascha Ossowski, Vipul Kashyap, and Rainer Unland, editors, Coopera-
tive Information Agents VIII, volume 3191 of Lecture Notes in Computer
Science, pages 199-214. Springer, 2004.

[18] J. Vokiinek, P. Novdk, and A. Komenda. Ground Tactical Mission
Support by Multi-agent Control of UAV Operations. volume 6867 of
Lecture Notes in Computer Science, pages 225-234. Springer Berlin /
Heidelberg, 2011.

[19] Jiff Vokfinek, Antonin Komenda, and Michal Péchoucek. Cooperative
agent navigation in partially unknown urban environments. In PCAR ’10.
Proceedings of the AAMAS-10 Workshops., pages 46-53, May 2010.

[4

=

[7

—

[8

=

[9

—

