
Supporting Publication and Subscription

Confidentiality in Pub/Sub Networks�

Mihaela Ion1, Giovanni Russello1, and Bruno Crispo2

1 CREATE-NET International Research Center,
via alla Cascata 56D, 38123 Trento, Italy

{mihaela.ion,giovanni.russello}@create-net.org
2 Department of Information Engineering and Computer Science,

University of Trento, Trento, Italy
crispo@disi.unitn.it

Abstract. The publish/subscribe model offers a loosely-coupled
communication paradigm where applications interact indirectly and asyn-
chronously. Publisher applications generate events that are sent to inter-
ested applications through a network of brokers. Subscriber applications
express their interest by specifying filters that brokers can use for rout-
ing the events. Supporting confidentiality of messages being exchanged
is still challenging. First of all, it is desirable that any scheme used for
protecting the confidentiality of both the events and filters should not
require the publishers and subscribers to share secret keys. In fact, such
a restriction is against the loose-coupling of the model. Moreover, such a
scheme should not restrict the expressiveness of filters and should allow
the broker to perform event filtering to route the events to the interested
parties. Existing solutions do not fully address those issues. In this paper,
we provide a novel scheme that supports (i) confidentiality for events and
filters; (ii) filters can express very complex constraints on events even if
brokers are not able to access any information on both events and filters;
(iii) and finally it does not require publishers and subscribers to share
keys.

1 Introduction

The publish/subscribe (pub/sub) model is an asynchronous communication
paradigm where senders, known as publishers, and receivers, known as sub-
scribers, exchange messages in a loosely coupled manner, i.e. without estab-
lishing direct contact. The messages that publishers generate are called events.
Publishers do not send events directly to subscribers, instead a network of in-
terconnected brokers is responsible for delivering the events to the interested
subscribers. In fact, publishers do not know who receives their events and sub-
scribers are not aware of the source of information. In order to receive events,
subscribers need to register their interest with a broker through a filter. When
� This work was supported by the EU FP7 programme, Research Grant 214859

(project Consequence) and Research Grant 216917(project MASTER).

S. Jajodia and J. Zhou (Eds.): SecureComm 2010, LNICST 50, pp. 272–289, 2010.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2010

Supporting Publication and Subscription Confidentiality 273

a new event is published, brokers forward it to all subscribers which expressed
a filter that matches the event.

The pub/sub communication paradigm has the advantage of allowing the full
decoupling of the communicating entities [8] which enables dynamic and flexible
information exchange between a large number of entities. The communicating
parties do not need to know each other or establish contacts in order to exchange
content. Moreover, if durable subscription is enabled, publisher and subscribers
do not need to actively participate in the interaction at the same time. If a
subscriber is offline when a publisher creates an event, the broker will store the
event until the subscriber becomes online and the event can be delivered.

Pub/sub is an open communication model, however, in many cases it may be
desirable to protect the content of publications and subscriptions from unautho-
rized accesses. Only intended subscribers should be able to read the events. At
the same time, subscribers may wish to keep the details of their filters private.
For example, a subscriber may ask to be notified when the price of the quotes
of a certain company is below a certain threshold. This information could reveal
the subscriber’s strategy to a competitor, thus the subscriber will wish to keep
it private.

One of the main challenges that pub/sub systems are still facing is protecting
the confidentiality of the exchanged information without limiting the decoupling
of the paradigm. Publishers and subscribers do not establish contact so they
cannot exchange keying material. Moreover, protecting the confidentiality from
malicious brokers is very difficult. Brokers should be able to route events by
matching them against filters expressed by the subscribers without having access
to the actual content of events and filters.

Current solutions for confidentiality in pub/sub systems achieve only partially
these goals. For example, in order to support routing based on expressive filters,
[12] and [14] encrypt only certain event fields while other fields are left as clear-
text so that they can be used for routing. Other solutions [14] require publishers
and subscribers to share a group key which hampers the loosely coupling and
scalability of pub/sub model. [16] provides confidentiality of events and filters
but the filter is restricted to equality with one keyword.

The main contribution of this paper is to present an approach catering for
the confidentiality in pub/sub systems such that: (i) it provides confidentiality of
events and filters, (ii) it does not require publishers and subscribers to share keys,
and (iii) it allows subscribers to express filters that can define any monotonic
and non-monotonic conditions. To achieve this, our solution combines attribute-
based encryption and an encrypted search scheme.

This paper is structured as follows: Section 2 introduces the pub/sub com-
munication model and provides an example of an application where pub/sub
confidentiality is required. Section 3 describes the problem of confidentiality and
the properties achieved by our solution and Section 4 introduces the relevant
encryption mechanisms. The details of our solution are provided in Section 5.
Section 6 revises the application example described in Section 2 implemented

274 M. Ion, G. Russello, and B. Crispo

with our approach. Section 7 provides the security analysis. Section 8 describes
the related work and Section 9 concludes the paper.

2 The Publish/Subscribe Communication Paradigm

Several pub/sub implementations that differ in the granularity used in the defi-
nition of the filters have been proposed in the literature. The most simple one is
topic-based, in which subscribers subscribe to a topic identified by a keyword [20].
A topic-based scheme is similar to the notion of group communication. When
subscribing to a topic T , a subscriber becomes a member of group T . When
an event for topic T is published, the event is broadcasted to all the members
of that group. Organizing topics in hierarchies allows a better management of
subscriptions [17]. For example, by registering to a topic, a subscriber is also
registered to all subtopics.

Topic-based schemes are easy to implement but they offer limited expressive-
ness. Content-based schemes are more flexible and allow expressing subscriptions
based on the actual content of the event. To express a filter on the content of
an event, subscribers need a query language and understanding of the data
formats. For example, in Gryphon [2] and Siena [5] events consist of sets of
(attributename = attributevalue) pairs and filters are specified as SQL WHERE
clauses. Java Message Service (JMS) [11] does not allow filtering on the content
of the event, but instead, events carry properties in their headers and subscribers
can define filters on them. Filters that apply to the composition of simple events
have also been proposed (such as in [1]). When expressing such a filter, sub-
scribers are notified upon the occurrence of the composite event.

Because of its generality and expressiveness, we will focus on content-based
filtering. We assume that filters define constrains in the form of name-op-value
where op can be one of the comparison operators such as =,≤, <,≥, >. Con-
strains can be logically combined using AND, OR and NOT to form complex
subscription patterns.

We motivate the need for confidentiality in pub/sub systems through an
example.

2.1 A Case for Pub/Sub Confidentiality

In this section we present an example of an application built using a pub/sub
system where confidentiality is of paramount importance. In particular, Figure 1
shows an example of a Financial News Service implemented using a pub/sub
system for information delivery. The publishers P are different stock exchanges
and financial news agencies which use the Financial News Service to sell their
content to customers S. To subscribe to particular content, a customer specifies
a filter and contacts the News Service to pay the fee and obtain a token. It then
subscribes with a broker B to receive notifications and the broker registers the
filter only after the token is verified with the Financial News Service. When a
publisher publishes some new content, the network of brokers will deliver the

Supporting Publication and Subscription Confidentiality 275

Fig. 1. An attacker who is able to corrupt a broker can listen on filters and events

content to the authorized subscribers. The publisher receives the payment from
the Financial News Service without contacting the subscribers directly.

In a typical pub/sub system where confidentiality is not implemented, an
attacker who is able to corrupt a broker could read the traffic that comes in and
out the broker. The attacker would be able to read the events without paying
the fee and then resell them, and read the filters expressed by the subscribers.
To protect from this kind of attacks, it is necessary to protect the content of
notifications and filters.

3 Confidentiality in Publish/Subscribe Systems

Providing the publication confidentiality property ensures that the content of
the events is hidden from the broker or any unauthorized third party listening
on the network. Only legitimate subscribers should be able to decrypt an event.
Providing the subscription confidentiality property ensures that the details of
the filters are hidden from the brokers (or other unauthorized parties). The
broker should be able only to tell if an event matches a filter but gain no other
information about the event and the filter. It has already been discussed in [16]
that both publication and subscription confidentiality are required to effectively
reduce the risk of leaking event or filter information in a pub/sub system. For
instance, in providing only subscription confidentiality an attacker who knows
the content of the event may infer the subscription filter.

However, providing both publication and subscription confidentiality in pub/
sub systems it is still an open issue. On the one hand, a basic encryption scheme
would require publisher and subscribers to share a secret key. This is not desirable
because it would weaken the referential decoupling property of the paradigm. On
the other hand, brokers would need to execute matching operations on encrypted
events and filters which is not simple using basic techniques.

The main contribution of this paper is to propose an encryption scheme for
pub/sub systems in which the following properties are supported:

276 M. Ion, G. Russello, and B. Crispo

(P1) confidentiality of events;
(P2) confidentiality of filters;
(P3) a simplified key management that does not require publishers and sub-

scribers to share keys, hence fully supporting the loosely-coupled model of the
pub/sub paradigm;

(P4) allowing brokers to execute matching of encrypted events against com-
plex encrypted filters.1

Confidentiality of events (P1) and filters (P2) can be achieved by means of en-
cryption. Encryption mechanisms usually require that publishers and subscribers
share a key which means they need to establish contact. However, this is not de-
sirable in pub/sub systems where publisher and subscribers do not communicate
with each other directly (loose coupling). What is required is a mechanism that
allows authorized subscribers to decrypt events without establishing shared keys
with the publishers (e.g., group keys). In our approach, publishers encrypt the
content of the event using an attribute-based encryption scheme (such as in [10])
specifying the characteristics that subscribes must satisfy to obtain the cleartext
of the event. In this way, we are effectively decoupling the encryption of events
at the publisher site from its decryption at the subscriber site and simplifying
the key management process (P3).

Because events and filters are encrypted, event filtering at the broker side
becomes a more complex task. Indeed, brokers should be able to decide whether
an event matches a filter or not, without having access to neither the content of
the event nor the filter. In our approach we combine the expressive access con-
trol structures supported by attribute-base encryption scheme with encrypted
search. This allows our scheme to support encrypted event filtering against com-
plex filters. The only information that the broker can access is which filters are
matched by an event (P4).

In the following section, we describe the techniques used in our approach for
supporting the above properties.

4 Background

This section provides background information on the techniques that we have
combined to achieve confidentiality in pub/sub systems without compromising
the loosely-coupled property of the paradigm.

4.1 Attribute-Based Encryption (ABE)

The concept of attribute-based encryption (ABE) was first introduced in [15]. In
their construction, both ciphertext and keys are labeled with sets of attributes.
A key is able to decrypt a ciphertext if at least k attributes match between key
and ciphertext.

1 With complex encrypted filters we mean filters that can express conjunctions and
disjunctions of equalities, inequalities and negations in an encrypted form.

Supporting Publication and Subscription Confidentiality 277

[10] extended this construction and introduced Key-Policy ABE (KP-ABE)
in which ciphertexts are labelled with sets of attributes and private keys are
associated with access structures. A key is able to decrypt a ciphertext if its
associated access structure is satisfied by the attributes of the ciphertext. The
access structure, represented as a tree, allows expressing any monotone access
formula consisting of AND, OR, or threshold gates.

[13] proposed a KP-ABE scheme that can additionally handle negations (i.e.,
NOT). The data can be decrypted only if a given attribute (embedded in the
key) is not present among the attributes of the ciphertext.

[4] proposed a construction for ciphertext policy ABE (CP-ABE) in which
policies (access structures) are associated with data and attributes are associated
with keys. This is similar to the capability model in access control. A key can
decrypt some data if its associated attributes satisfy the policy associated with
the data. They also show how to construct the access tree in order to additionally
handle inequalities.

4.2 Encrypted Search

[18] proposed a mechanism for equality tests on data encrypted with a symmetric
key. The advantages are that the searched keyword remains secret and the server
cannot learn anything more about the data than the search results. However,
the scheme works only for matching single words. The solution of [9] addresses
the problem of conjunctions. Documents are stored encrypted together with a
list of keywords, also encrypted. To retrieve a document, the user computes a
capability for the list of keywords of interest. The server uses the capability to
search for documents. The disadvantage of this method is that the server can
learn the keywords from the capabilities.

[7] propose a data encryption scheme that allows an untrusted server to per-
form encrypted searches on data without revealing the data or the keywords
to the server. The advantage of this method is that it allows multi-user access
without the need for a shared key between users. Each user in the system has
a unique set of keys. The data encrypted by one user can be decrypted by any
other authorized user. The scheme is built on top of proxy encryption schemes.
The idea is that a user defines a set of keywords for each document. The key-
words and document are encrypted using proxy encryption and stored on the
server. When a user wants to search for a document, it needs to create a trap-
door for each keyword. The trapdoor is used by the server to match the search
keywords against the keywords of the stored document. The server can identify
a match without learning the keyword.

5 Solution Details

In this section, we discuss in details our scheme for providing confidentiality
in pub/sub systems. We assume an honest-but-curious model for publishers,
brokers and subscribers, as in [19,16]. This means that the entities follow the

278 M. Ion, G. Russello, and B. Crispo

protocol, but may be curious to find out information by analysing the messages
that are exchanged. For example, a broker may try to read the content of an
event or try to learn the filtering constrains of subscribers. Subscribers may want
to read the events delivered to other subscribers. We also assume that a passive
attacker outside the pub/sub system may be able to listen on the communication
and invade the privacy of the participants.

In our approach an event E consists of:(i) the message M that represents the
content of the event and (ii) a set of attributes ai that characterise M and are
used for event filtering by the brokers.

To support confidentiality of events (P1), the message M is encrypted using
CP-ABE [4]. CP-ABE allows a publisher to specify which attributes a decrypter
must have. The goal is to allow only authorised subscribers to decrypt mes-
sages. So, a publisher could specify that only who subscribed to IBM market
data should read the message. In using CP-ABE to encrypt M , publishers and
subscribers do not need to share any secret key (thus achieving property P4).

Filter confidentiality (P2) is achieved by combining KP-ABE [10] with multi-
user searchable data encryption (SDE) scheme [7]. In particular, a subscriber Sj

can define a filter Fj as KP-ABE access trees. The set of attributes ai that the
publisher defined on an event E is used by the brokers against the filters. When
the event E reaches a broker, if the set of attributes associated with the event
satisfy the filter Fj , then the broker knows that the event can be forwarded to
Sj . However, the broker does not gain any information on the actual content of
the event because M is encrypted with CP-ABE.

However, if the KP-ABE scheme is used as proposed in [10], then the bro-
ker is still able to obtain information on the filters and attributes associated
with events, thus violating the confidentiality of events and filters. In fact, the
KP-ABE scheme requires that attributes associated with the ciphertext are not
encrypted. To circumvent this limitation, we propose the following modification
to the KP-ABE scheme: the set of attributes associated with an event and the
access tree representing the filter are encrypted using the scheme from [7]. The
scheme supports encrypted search, so it can be used to verify if the encrypted
attributes specified by the publisher are the same as those specified by the sub-
scriber in the filter. With this modification, our scheme supports confidentiality
of filters (P2) and allows the brokers to perform encrypted event filtering (P4).
It should be noted that both KP-ABE and the multi-user SDE do not require
that publishers and subscribers share keys thus simplifying the key management
and respecting the referential decoupling of the pub/sub paradigm (P3).

In the following, we show the steps that are performed in our scheme.

5.1 Init(1k)

The initialisation is run by a trusted authority and defines the security param-
eters for KP-ABE and El Gamal based SDE schemes.

On input 1k, output two prime numbers p and q such that q = (p − 1)/2
and |q| = k, and a cyclic group G1 with generator g such that G1 is the unique
order q subgroup of Z

∗
p. Let e : G1 x G1 → G2 be a bilinear map. In addition,

Supporting Publication and Subscription Confidentiality 279

γγγ ∈∈ ====

=γ =γ

=γ

γ

γγγ ∈∈ ====

γ

Fig. 2. Event encryption

define the Lagrange coefficient Δi,S for i ∈ Zp and a set S of elements in Zp:
Δi,S(x) =

∏
j∈S,j �=i

x−j
i−j . Each attribute will be mapped to a number in Z

∗
p by

using a collision resistant function H1 : {0, 1}∗ → Z
∗
p. This allows using arbitrary

strings as attributes and adding them to a user’s private key. The event will be
encrypted using a set of n2 elements of Z

∗
p.

Choose a random y ∈ Zp and compute g1 = gy. Also choose a random element
g2 from G1. Let N be the set {1, 2..., n + 1}, where n is the number of attributes
used for event encryption. Choose t1, ..., tn+1 uniformly at random from G1.
Define a function T as:

T (X) = gXn

2

n+1∏

i=1

t
Δi,N (X)
i .

Publish the public parameters as: PKKP : g1, g2, t1, ..., tn, and keep securely the
master key MKKP : y.

We define the parameters for the El Gamal based SDE scheme in group G1 as
in [7]. Let x be chosen uniformly at random from Z

∗
p and compute h = gx. Let

H be a collision resistant hash function, f a pseudorandom function and s1 a
random key for f . Output the public and secret parameters for El Gamal based
SDE: publish PKSE = (G1, g, p, h, H, f), and keep securely MKSE = (x, s1).

For every user (publisher or subscriber), run Keygen(MKSE, i) as in SDE,
where i is the identity of the user. This function chooses xi1 random from Zp

and gives it to the user (publisher or subscriber) and computes xi2 = x − xi1

and gives to the broker connected to the user the key (i,xi2).

2 With minor modifications, KP-ABE can encrypt to all sets of size ≤ n.

280 M. Ion, G. Russello, and B. Crispo

5.2 Event Encryption

Figure 2 shows the steps needed to encrypt an event. The publisher specifies a
set of attributes γ under which the content M ∈ G2 of the event will be en-
crypted.

Step 1. To provide confidentiality of M , the publisher encrypts it using the
CP-ABE scheme. We call the message encrypted in this way M ′.

Step 2. To provide confidentiality of attributes, the publisher encrypts them us-
ing the multi-user SDE. A new set γ∗

p will be generated as follows: every attribute
ai of γ is encrypted using KEnc-U(xp1, ai). KEnc-U(xp1, ai) performs the follow-
ing operations. Choose ri at random from Zp and compute c∗(ai) = (ĉ1, ĉ2, ĉ3)
where ĉ1 = gri+σi , σi = fs1(ai), c2 = ĉ

xp1
1 , ĉ3 = H(hri). The encrypted set of

attributes γ∗
p contains all c∗(ai).

Step 3. For every attribute a ∈ γ, the publisher computes a trapdoor by calling
Trapdoor((xp1, s1), a) as in multi-user SDE . Trapdoor() chooses a random r in
Zq and computes TDp(a) = (td1, td2) for each attribute such that td1 = g−rgσa

and td2 = hrg−xp1rgxp1σa = gxp2rgxp1σa where σa = fs1(a).

Step 4. The publisher encrypts the message M ′ under γ as in KP-ABE. Choose
a random s ∈ Zp and compute the ciphertext as:

E∗ = Encrypt(M’, γ, PKKP)= (γ∗
p , E’=M ′e(g1, g2)s, E”=gs,

{Ea = T (a)s)}a∈γ)

Note that we replaced the unencrypted set of attributes γ (as it appears in KP-
ABE) with the encrypted set γ∗

p . The values E’, E” and Ea are computed as in
KP-ABE.

Step 5. The publisher sends the encrypted event E∗ together with the trapdoors
for matching event attributes to the broker:

E∗
p=(γ∗

p ,{TDp(a)}a∈γ ,E’=M ′e(g1, g2)s, E”=gs, {Ea = T (a)s)}a∈γ).

Step 6. The broker locates the key (p, xp2) corresponding to the publisher and
re-encrypts γ∗

p to γp by calling KEnc-B(p,xp2, c
∗(a)) for each attribute c∗a of γ∗

p .
KEnc-B() transforms each encrypted attribute c∗(a) in c(a) = (c1, c2) so that
c1 = ĉ

xp2
1 ĉ2 = ĉ

xp2+xp1
1 = (gr+σ)x = hr+σ where σ = fs1(a) and c2 = ĉ3 =

H(hr). The final encrypted event is:

Ep=(γp,{TDp(a)}a∈γ ,E’=M ′e(g1, g2)s, E”=gs, {Ea = T (a)s)}a∈γ).

The above operations provide confidentiality of the message and attributes for
an event, thus achieving property P1.

Supporting Publication and Subscription Confidentiality 281

=

==

⎪
⎩

⎪
⎨

⎧

=
=

=
=

+ σ

⎪⎩

⎪
⎨
⎧

=
==

+ σ

Fig. 3. Filter generation and encryption

5.3 Filter Generation

Figure 3 shows the main steps for generating and encrypting the filter.

Step 1. The subscriber defines the filter as an access tree F . Each non-leaf node
of the tree represents a threshold gate described by a value and its children. Let
x be a node with numx children. The threshold value kx represents the number
of children subtrees that need to be satisfied, hence 1 ≤ kx ≤ numx. When
kx = 1 the threshold gate is an OR and when kx = numx, the threshold gate
is an AND. Each leaf node x is described by an attribute and a threshold value
kx = 1.

We additionally define the following functions on the tree: parent(x) returns
the parent of a node x and att(x) is defined only for a leaf node and returns the
attribute associated with x. Further, we define an ordering between the children
of every node x and give each child an index from 1 to numx. The function
index(x) returns the index associated to node x.

Step 2. As in KP-ABE, the subscriber sends the filter F to a trusted authority
and requests a decryption key DF . When applying to an event the filter DF ,
the result will be a secret value (used for partially decrypting the content M)
only if the attributes associated with the event match the filter. Otherwise the
returned value will be a null value (⊥).

282 M. Ion, G. Russello, and B. Crispo

Choose a polynomial qx for each node x in the tree F ∗
s . The polynomials are

chosen in a top down manner, starting from the root node r. For each node x in
the tree, set the degree dx of the polynomial qx to be one less than the threshold
value kx of that node, that is, dx = kx−1. Now for the root node r, set qr(0) = y
and dr other points of the polynomial qr randomly to define it completely. For
any other node x, set qx(0) = qparent(x)(index(x)) and choose dx other points
randomly to completely define qx.

Once the polynomials have been decided, for each leaf node x, the authority
gives the following secret values to the subscriber:

Dx = g
qx(0)·T (a)rx

2 , where a=att(x)
Rx = grx

where rx is chosen uniformly at random from Zp for each node x. The set of the
above values is the filter DF , corresponding to a decryption key in KP-ABE.

Step 3. Encrypt the leaf nodes of the filter using multi-user SDE. For every
leaf node x in F run KEnc-U(xs1, a), where a=att(x). Choose r at random from
Zp and compute c∗(a) = (ĉ1, ĉ2, ĉ3) where ĉ1 = gr+σ, σ = fs1(a), c2 = ĉxs1

1 ,
ĉ3 = H(hr).

Step 4. The subscriber sends DF together with F ∗
s to the broker. The bro-

ker locates the key (s1, xs2) corresponding to the subscriber and re-encrypts the
leaf-node attributes of F ∗

s . For each attribute c∗(a) run KEnc-B(s1, xs2, c
∗(a)).

First compute c(a) = (c1, c2) such that c1 = ĉxs2
1 ĉ2 = ĉxs2+xs1

1 = (gr+σ)x = hr+σ

where σ = fs1(a) and c2 = ĉ3.
The above operations provide confidentiality of the filter, thus achieving prop-

erty P2. At the same time, the filter is able to express any access formula. We
only give the details for expressing any monotone access formula consisting of
AND, OR, or threshold gates, bur by extending the construction as in [13] and
[4] we are able to represent inequalities and non-monotone access structures,
thus achieving property P3.

5.4 Filtering of Events

When a new event Ep is published, for every filter DF the broker will run the
decryption algorithm from KP-ABE to verify if DF decrypts Ep.

Step 1. Figure4 shows the operations necessary in this step. For each leaf node
in DF check if it belongs to the set of attributes specified by the publisher. In
KP-ABE this step is straightforward since the attributes are not encrypted. We
will use multi-user SDE to check if the encrypted attributes match the encrypted
filters. For every leaf node x with attribute a encrypted as (cb1, cb2) in the fil-
ter Fs, check if it is contained in the set of attributes γp as follows. For every
attribute a in γp, the broker retrieves the trapdoor TDp(a) and the secrete key
(p,xp2) and computes TD=td

xp2
1 td2 = gxσ. Then it checks if cb2 = H(cb1 ·TD−1).

If this is the case, we will have that

Supporting Publication and Subscription Confidentiality 283

⎩
⎨
⎧

=
==

+ σ

γγγ ∈∈ ====

⎩
⎨
⎧

=
==

−

σ

σ

σ==
−= ⊥

Fig. 4. Event filtering

DecryptNode(Ep, DF , x) = e(Dx,E”)
e(Rx,Ea) = e(g

qx(0)
2 ·T (a)rx ,gs)
e(grx ,T (a)s) =

e(g
qx(0)
2 ,gs)·e(T (a)rx ,gs)

e(grx ,T (a)s) = e(g, g2)sqx(0)

otherwise, DecryptNode(E,DF ,x)=⊥.
We now consider the recursive case when x is a non-leaf node. The algorithm

DecryptNode(E,DF ,x) then proceeds as follows. For all nodes z that are children
of x, it calls DecryptNode(E,DF ,z) and stores the output as Fz . Let Sx be an
arbitrary kx-sized set of child nodes z such that Fz �=⊥. If no such set exists then
the node was not satisfied and the function returns ⊥. Otherwise, we compute:

Fx =
∏
z∈Sx

F
Δi,S′

x(0)

z

{
where i = index(z),

S′ = {index(z) : z ∈ Sx}

=
∏
z∈Sx

(e(g, g2)
s·qz(0))Δi,S′

x
(0)

=
∏
z∈Sx

(e(g, g2)
s·qparent(z)(index(z)))Δi,S′

x
(0) (by construction)

=
∏
z∈Sx

(e(g, g2)
s·qx(0))Δi,S′

x
(0) = e(g, g2)

sqx(0) (using polynomial interpolation)(1)

and return the result. The broker calls the DecryptNode function on the root
node of the encrypted filter. DecryptNode(E, DF , r) = e(g, g2)ys = e(g1, g2)s if
and only if the attributes of the event satisfy the filter. If the result equals ⊥, it
means that the content does not match the filter.

Step 2. In case of a successful match, the broker obtains M’ from E′ = M ′e(g1,
g2)s by dividing it with e(g1, g2)s and forwards it to the subscriber.

284 M. Ion, G. Russello, and B. Crispo

Fig. 5. Key and message exchange for filter generation

5.5 Decryption of the Content

When the subscriber receives M’, if its attributes satisfy the requirements defined
by the publisher by means of CP-ABE, the subscriber is able to obtain the con-
tent M. It should be stressed that although publishers select the attributes, they
do not know the subscribers. Publishers are only characterizing the subscribers
so it could be the case that a subscriber who receives the event is not able to
decrypt the content because it does not satisfy the properties specified by the
publisher. For example, a publisher may want to send an event only to people
belonging to a particular organization. Subscribers interested in the information
but not belonging to that organization will not be able to decrypt the event.

6 Revisiting the Stock Quote Example

In the following we show how the example in Section 2.1 can be extended with
the solution described above to provide confidentiality of events and filters.

As part of the initialization (see Section 5.1), the Trusted Authority generates
the public(PK) and master (MK) keys for KP-ABE, CP-ABE and SDE. The
public keys are published while the master keys are kept securely.

In our example, publisher P and subscriber S register with the Financial News
Service. The Service contacts the Trusted Authority to generate the secret keys

Supporting Publication and Subscription Confidentiality 285

of the publisher and subscriber that will be used for SDE. The Trusted Authority
sends these keys on a secure channel to the publisher (i), subscriber (ii) and also
to the brokers (iii, iv). These steps are shown in Figure 5.

Subscriber S expresses the subscription filter: ”Sym=IBM” AND ”Price>10”.
The following operations need to be performed (see Figure 5):

1. Construct the access tree corresponding to the filter. The tree representing
the filter is shown in Figure 6. To represent the inequality ”Price>10” we
use the representation introduced in [4] and construct the access tree by
expressing conditions on the bit values of the attribute. The threshold values
of the nodes represent the number of sub-trees that need to be satisfied. In
our example, 2 corresponds to an AND and 1 to an OR.

2. The subscriber sends this filter to the Trusted Authority which will generate
a key DF . This key is able to decrypt any event whose attributes satisfy the
filter.

3. To ensure confidentiality of the filter, the attributes expressed in the leaf
nodes are encrypted using SDE.

4. The subscriber sends the filter which contains DF and the encrypted tree to
broker B2. The broker further distributes the encrypted filter in the pub/sub
network.

Fig. 6. Access tree for ”Sym=IBM” AND ”Price>10”

Next, publisher P generates an event with the following attributes: ”Sym=IBM”
AND ”Price=11”. This event is to be received only by subscribers with the
attribute ”Premium customer”. The publisher performs the following operations,
as shown in Figure 7.

1. Request a CP-ABE key for ”Premium customer” from the Trusted
Authority.

2. Encrypt the message content M with the received key. This ensure that only
subscribers who possess this attribute will be able to read the message.

3. To allow comparisons of numerical values, the publisher creates an at-
tribute for each bit of the numerical attribute (as introduced in [4]). For
Price=11 (1011), the attributes are: Price=1***, Price=*0**, Price=**1*
and Price=***1.

286 M. Ion, G. Russello, and B. Crispo

Fig. 7. Key and message exchange for event generation

4. Encrypt the message M using KP-ABE under the defined attributes.
5. To provide confidentiality of the attributes, encrypt all attributes using SDE.

Also compute a trapdoor for each attribute (see section 5.2).
6. Send to broker B1 M encrypted under CP-ABE and KP-ABE and the en-

crypted attributes with their trapdoors computed as in SDE.

Broker B1 matches the received event against the stored filters and based on
the matching result, it forwards the event to broker B2. Broker B2 matches the
event against the filter from subscriber S. The matching corresponds to a KP-
ABE decryption for which we additionally encrypted the ciphertext attributes
and key access tree. When the event from publisher P is matched against the
filter from subscriber S, the broker is able to remove the KP-ABE encryption
without learning neither the attributes nor the filter. The matching result is
the message content M expressed by the publisher encrypted with CP-ABE. B2

then forwards the matching result to S. The subscriber S is able to decrypt the
message only if it possesses the attribute ”Premium customer”.

7 Security Analysis

This section evaluates the security of the scheme. To ensure confidentiality of
events our scheme encrypts both messages and associated attributes to prevent
attackers to infer an event from its attributes. Messages are encrypted using
CP-ABE encryption [4]; the attributes are encrypted using the multi-user SDE

Supporting Publication and Subscription Confidentiality 287

scheme, then encrypted messages are further encrypted by the publisher under
the set of attributes by using KP-ABE with non-monotonic filters.

All the used encryption schemes are proved to be at least indistinguishable
under chosen plaintext attack (IND-CPA). [6] proves CP-ABE to be chosen
plaintext (CPA) secure under the Decisional bilinear Diffie-Hellmann (DBDH)
assumption, generally considered a hard problem. About multi-user SDE [7]
proves that the concrete construction, our scheme uses, built upon El Gamal-
based proxy encryption is indistinguishable under chosen plaintext attack (IND-
CPA) under the assumption the Decisional Diffie-Hellmann problem is hard
relative to the group on which El Gamal is defined. Hence the encryption scheme
that protects events is IND-CPA secure. About the KP-ABE scheme, [13] proves
that the IND-CPA security of KP-ABE with non-monotonic access structures
in the attribute-based selective-set model reduces to the hardness of the Deci-
sional bilinear Diffie-Hellmann (DBDH) assumption, generally considered a hard
problem.

All encryption primitives used by our scheme are IND-CPA secure, what is left
is to show their combination is still secure. The different mechanisms are used
as multiple layer of encryption and [3] shows that if a cryptosystem is secure in
the sense of indistinguishability, then the cryptosystem in the multi-user setting,
where related messages are encrypted using different keys, is also secure. In our
case each encryption layer uses an independent key so the combination is at least
as secure as any individual encryption. Thus, the scheme is at least IND-CPA
secure.

Filters’ confidentiality is achieved by using KP-ABE with multi-user SDE.
Thus, using the same argument used for the case of events’ confidentiality also
in case of filters the multiple layer encryption is IND-CPA secure.

8 Related Work

Current solutions for ensuring confidentiality in publish/subscribe systems pro-
vide only some of the properties satisfied by our solution, but not all of them at
the same time. For example, [12] proposes a scheme that does not require pub-
lishers and subscribers to share a key, but does not achieve full confidentiality of
events and confidentiality of filters. Events are encoded in XML format, but only
specific fields (e.g., price) are encrypted with a symmetric key k. The publisher
then encrypts k with its public key. The brokers forward the event based on the
fields left unencrypted and a proxy service changes the encryption of k to an
encryption with the public key of the subscriber.

In [14] Raiciu and Rosenblum achieve partial confidentiality but they require
that publishers and subscribers share a group key which is used to encrypt
events and filters. In their model, notifications are composed of (name, value)
pairs where only value is encrypted which in some scenarios may not provide a
sufficient level of confidentiality.

In [19], Srivartsa & Liu propose a specific key management scheme and a
probabilistic multi-path event routing to prevent frequency inferring attacks.

288 M. Ion, G. Russello, and B. Crispo

The method achieves confidentiality of events and filters, however, filtering is
done based on only one keyword. A centralized trusted authority distributes en-
cryption keys to publishers and authorization keys to subscribers. Inequalities
are supported by using a hierarchical key structure where each key corresponds
to an interval. However, the inequality condition cannot be checked by the bro-
kers, instead, after receiving an event corresponding to the specified keyword, a
subscriber will be able to decrypt it only if the numerical value of the event’s
attribute is in the range corresponding to the subscriber’s authorization key.

In [16], Shikfa et al. propose a solution based on multiple layer commuta-
tive encryption that achieves content and filter confidentiality, and routing of
encrypted data. The advantage of this method is that key management is local
and publisher and subscribers do not need to share keys. However, the filter is
limited to equality filter with only one keyword.

9 Conclusions and Future Work

In this paper, we presented a solution for providing confidentiality in pub/sub
systems. Our solution is an encryption scheme based on CP-ABE, KP-ABE and
multi-user SDE. Our scheme supports both the publication and the subscription
confidentiality properties while at the same time does not require publishers and
subscribers to share secret keys. Although events and filters are encrypted, bro-
kers can still perform event filtering without learning any information. Finally,
our scheme allows subscribers to express filters that can define any monotonic
and non-monotonic constraints on events.

As future work, we are working on a more formal proof to evaluate the security
of the scheme. At the same time, we are planning to implement our scheme and to
include it in one of the mainstream implementations of the pub/sub model. This
would allow us to assess the impact in performance that such scheme imposes
on the resources of the pub/sub system.

Acknowledgements

The work of the second author is supported by the EU project Consequence
Research Grant FP7-214859. The work of the third author is partially funded
by the EU project MASTER contract no. FP7-216917.

References

1. Bacon, J., Moody, K., Bates, J., Hayton, R., Ma, C., McNeil, A., Seidel, O., Spiteri,
M.: Generic support for distributed applications. IEEE Computer 33(3), 68–76
(2000)

2. Banavar, G., Chandra, T., Mukherjee, B., Nagarajarao, J., Strom, R., Sturman,
D.: An efficient multicast protocol for content-based publish-subscribe systems. In:
International Conference on Distributed Computing Systems, vol. 19, pp. 262–272.
IEEE Computer Society Press, Los Alamitos (1999)

Supporting Publication and Subscription Confidentiality 289

3. Bellare, M., Boldyreva, A., Staddon, J.: Multi-recipient encryption schemes: Se-
curity notions and randomness re-use. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS,
vol. 2567. Springer, Heidelberg (2002)

4. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based en- cryp-
tion. In: IEEE Symposium on Security and Privacy, pp. 321–334 (2007) (Citeseer)

5. Carzaniga, A., Rosenblum, D.S., Wolf, A.L.: Design and evaluation of a wide- area
event notification service. ACM Transactions on Computer Systems (TOCS) 19(3),
332–383 (2001)

6. Cheung, L., Newport, C.: Provably secure ciphertext policy abe. In: CCS 2007: Pro-
ceedings of the 14th ACM conference on Computer and communications security,
pp. 456–465. ACM, New York (2007)

7. Dong, C., Russello, G., Dulay, N.: Shared and searchable encrypted data for un-
trusted servers. In: Atluri, V. (ed.) DAS 2008. LNCS, vol. 5094, pp. 127–143.
Springer, Heidelberg (2008)

8. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The many faces of
publish/subscribe. ACM Computing Surveys (CSUR) 35(2), 131 (2003)

9. Golle, P., Staddon, J., Waters, B.: Secure conjunctive keyword search over en-
crypted data. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS,
vol. 3089, pp. 31–45. Springer, Heidelberg (2004)

10. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Proceedings of the 13th ACM confer-
ence on Computer and communications security, p. 98. ACM, New York (2006)

11. Burridge, R., Sharma, R., Fialli, J., Hapner, M., Stout, K.: Java message service.
Sun Microsystems Inc., Santa Clara (2002)

12. Khurana, H.: Scalable security and accounting services for content-based pub-
lish/subscribe systems. In: Proceedings of the 2005 ACM symposium on Applied
computing, p. 807. ACM, New York (2005)

13. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non- mono-
tonic access structures. In: Proceedings of the 14th ACM conference on Computer
and communications security, p. 203. ACM, New York (2007)

14. Raiciu, C., Rosenblum, D.S.: Enabling confidentiality in content-based pub-
lish/subscribe infrastructures. In: Securecomm and Workshops. vol. 28, pp. 1–11
(2006)

15. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

16. Shikfa, A., Onen, M., Molva, R.: Privacy-Preserving Content-Based Pub-
lish/Subscribe Networks. In: Proceedings of Emerging Challenges for Security, Pri-
vacy and Trust: 24th Ifip Tc 11 International Information Security Conference, SEC
2009, Pafos, Cyprus, May 18-20, p. 270. Springer, Heidelberg (2009)

17. Singhera, Z.U.: A workload model for topic-based publish/subscribe systems (2008)
18. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted

data. In: Proceedings of 2000 IEEE Symposium on Security and Privacy, SP 2000,
pp. 44–55 (2000)

19. Srivatsa, M., Liu, L.: Secure event dissemination in publish-subscribe networks.
In: Proceedings of the 27th International Conference on Distributed Computing
Systems, p. 22 (2007) (Citeseer)

20. Zhuang, S.Q., Zhao, B.Y., Joseph, A.D., Katz, R.H., Kubiatowicz, J.D.: Bayeux:
An architecture for scalable and fault-tolerant wide-area data dissemination. In:
Proceedings of the 11th international workshop on Network and operating systems
support for digital audio and video, p. 20. ACM, New York (2001)

	Supporting Publication and Subscription Confidentiality in Pub/Sub Networks
	Introduction
	The Publish/Subscribe Communication Paradigm
	A Case for Pub/Sub Confidentiality

	Confidentiality in Publish/Subscribe Systems
	Background
	Attribute-Based Encryption (ABE)
	Encrypted Search

	Solution Details
	Init(1k)
	Event Encryption
	Filter Generation
	Filtering of Events
	Decryption of the Content

	Revisiting the Stock Quote Example
	Security Analysis
	Related Work
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

