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ABSTRACT
This paper presents an algorithm for content-based forward-
ing, an essential function in content-based networking. Un-
like in traditional address-based unicast or multicast net-
works, where messages are given explicit destination ad-
dresses, the movement of messages through a content-based
network is driven by predicates applied to the content of the
messages. Forwarding in such a network amounts to eval-
uating the predicates stored in a router’s forwarding table
in order to decide to which neighbor routers the message
should be sent. We are interested in finding a forwarding
algorithm that can make this decision as quickly as possible
in situations where there are numerous, complex predicates
and high volumes of messages. We present such an algorithm
and give the results of studies evaluating its performance.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Net-
work Protocols—Routing protocols; C.2.1 [Computer-
Communication Networks]: Network Architecture
and Design—Distributed networks; C.2.4 [Computer-
Communication Networks]: Distributed Systems—Dis-
tributed applications

General Terms
Algorithms, Measurement, Performance, Experimentation

Keywords
Content-based network, forwarding, matching, overlay, pub-
lish/subscribe

1. INTRODUCTION
Content-based communication is a novel communication

service whereby the flow of messages from senders to re-
ceivers is driven by the content of the messages, rather than
by explicit addresses assigned by senders and attached to the
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messages [9]. Using a content-based communication service,
receivers declare their interests by means of selection pred-
icates, while senders simply publish messages. The service
consists of delivering to any and all receivers each message
that matches the selection predicates declared by those re-
ceivers.
In a content-based service model, message content is

structured as a set of attribute/value pairs, and a selection
predicate is a logical disjunction of conjunctions of elemen-
tary constraints over the values of individual attributes. For
example, a message might have the following content

[class=“alert”, severity=6, device-type=“web-server”,
alert-type=“hardware failure”]

which would match a selection predicate such as this:

[alert-type=“intrusion” ∧ severity>2 ∨ class=“alert” ∧
device-type=“web-server”]

An ideal application for a content-based communication
service is a publish/subscribe event notification service [4, 5,
7], where a selection predicate represents a subscription and
a message represents a published event. Other applications
that can directly benefit from a content-based communi-
cation service include system monitoring and management,
network intrusion detection, service discovery, data sharing,
distributed electronic auctions, and distributed games.
We believe that the best way to provide a content-

based communication service is through a content-based net-
work. A content-based network is an overlay network whose
routers perform specialized routing and forwarding func-
tions. Routing in a content-based network amounts to syn-
thesizing distribution paths from a combination of the topo-
logical features of the overlay network and the selection
predicates declared by applications. The routing function
compiles two forwarding tables: the first contains topolog-
ical constraints, and is conceptually identical to a forward-
ing table of an IP router, while the second contains selection
predicates, and is the result of combining the selection predi-
cates declared by applications. The forwarding function de-
termines the set of next-hop destinations by applying the
appropriate topological constraints found in the first table,
and by matching the content of the message against the set
of selection predicates found in the second table.
Our concern in this paper is with the design of a fast for-

warding function for a content-based network. In particular,
we focus on the predicate-matching algorithm, since this is
the novel aspect of the forwarding function in a content-
based network. Notice that the properties of the forwarding
table used by this algorithm (the second table mentioned
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above) result directly from the characteristics of end-user
applications, as opposed to characteristics of the network it-
self. We seek an algorithm that can scale well in situations
where there are numerous, complex predicates and high vol-
umes of messages generated by end-user applications.
In this paper we present a forwarding algorithm and give

the results of studies evaluating its performance. Because
our goal is fast forwarding, our primary metric for success
is how well we minimize, for a given message, the time it
takes to identify the set of neighbors to which the message
should be forwarded. Intuitively, the main scale factor of
the algorithm is the total number of constraints resident in
the forwarding table.
Our evaluation shows that the algorithm has good abso-

lute performance under heavy loads and in a variety of net-
work configurations, including the extreme case of a single,
centralized router. It also shows that the algorithm scales
sublinearly in the number of conjunctions, with almost no
degradation of throughput, in the context of a network of
routers with a fixed number of neighbor nodes. For exam-
ple, a software implementation of our algorithm, running
on a 950Mhz computer, is able to forward a 10-attribute
message in 3 milliseconds in a situation where there are 20
predicates (i.e., neighbors) consisting of 250000 conjunctions
formed from 5 million individual constraints over an alpha-
bet of 1000 attributes. In this experiment, the message went
to 18 of the 20 neighbors, but we observed in other exper-
iments that the performance generally improves (i.e., the
forwarding time goes down) as the percentage of matching
neighbors goes down. In terms of space, the forwarding ta-
ble in this experiment occupies only 48 bytes per constraint,
even though we have not yet turned our attention to opti-
mizing that aspect of the algorithm.
In the next section we provide some necessary detail con-

cerning the content-based service model and the general ar-
chitecture of a content-based network. We then discuss re-
lated work, highlighting the contribution of this paper. Fol-
lowing that, we present our forwarding algorithm. An ex-
perimental evaluation of its performance is then described.
We conclude with a summary and future plans.

2. CONTENT-BASED NETWORKING
A content-based network is an application-level overlay

consisting of client nodes and router nodes, connected by
communication links. A content-based network accepts mes-
sages for delivery, and is connectionless and best-effort in
nature. As mentioned in the previous section, it is the
communication model of a content-based network that dif-
fers significantly from a traditional (unicast or multicast)
address-based network such as IP. In a content-based net-
work, nodes are not assigned unique network addresses, nor
are messages addressed to any specific node. Instead, each
node advertises a predicate that defines messages of interest
for that node and, thus, the messages that the node intends
to receive. The content-based service consists of delivering
a message to all the client nodes that advertised predicates
matching the message.
The content-based service does not eliminate the need for

network addresses. Instead, it limits their use to that of
node identifiers. In particular, node identifiers are needed to
associate predicates with their issuers, to maintain topolog-
ical routing information, and to manage direct (lower-level)
communications between nodes. The fundamental difference

with respect to traditional networks such as IP is that these
identifiers are not used as locators or destination specifiers
by either senders or receivers.
The concept of a content-based network service is inde-

pendent of the form of messages and predicates. Denoting
the universe of messages as M, and the universe of predi-
cates over M as P : M → {true, false}, we say that P and
M define a content-based addressing scheme, which in turn
defines the content-based service. Consistently we say that
the predicate pn advertised by n is the content-based address
of the node n. We also say that a message m is implicitly
addressed by its content to a node n with content-based
address pn if pn(m) = true.
In practice, we must refine these definitions somewhat.

Here we use the concrete syntax and semantics embodied
in the Siena event notification service [7] to illustrate what
we mean by messages and predicates. Thus, a message is
a set of typed attributes. Each attribute is uniquely iden-
tified within the message by a name, and has a type and
a value. For purposes of this paper, we consider the com-
mon types string, integer, and boolean. For example, [string
carrier = UA; string dest = ORD; int price = 300; bool up-
gradeable = true;] would be a valid message. A predicate
is a disjunction of conjunctions of constraints on individual
attributes. Each constraint has a name, a type, an operator,
and a value. A constraint defines an elementary condition
over a message. A message matches a constraint if it con-
tains an attribute with the same name and type, and if the
value matches the condition defined by the operator and
value of the constraint. For example, [string dest = ORD ∧
int price < 400] is a valid predicate matching the message
of the previous example.
Note that the service model of Siena is largely consistent

with other publish/subscribe services [4, 5, 12, 16, 19, 21].
The choice of a disjunctive normal form for predicates is also
a natural extension of existing standards for application-
level publish/subscribe services (e.g., JMS and Corba NS),
in which multiple subscriptions are combined naturally to
form summary predicates that are disjunctions of the ele-
mentary subscriptions. To date we have not considered the
pros and cons of an alternative content-based addressing
scheme based on a conjunctive normal form of predicates.

2.1 Content-Based Routing
In order to put the forwarding function in context, we

briefly describe the routing scheme that is used in conjunc-
tion with the forwarding function. Details of the routing
scheme are presented elsewhere [8].
At a high level we propose to implement a content-based

network service starting from the basis of a broadcast sys-
tem, and then using advertised predicates to prune branches
of the broadcast distribution trees, thereby limiting the
propagation of each message to only those nodes that ad-
vertised predicates matching the message. This strategy is
illustrated in Figure 1. To implement this routing scheme, a
router runs two types of routing protocols: a broadcast rout-
ing protocol and a content-based routing protocol. The first
protocol processes topological information and maintains
the forwarding state that would be necessary to implement
a broadcast system. The second protocol processes pred-
icates advertised by nodes, and maintains the forwarding
state necessary to decide, for each router interface, whether
a message matches the predicates advertised by any down-
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Figure 1: Network Overlay and High-Level Routing
Scheme

stream node reachable through that interface. (Notice that,
by analogy to an IP network, we term the connections of a
content-based router to its adjacent nodes as the interfaces
of that router.)
The content-based routing protocol uses two mechanisms

for the propagation of routing information. The first is a
“push” mechanism based on receiver advertisements, while
the second one is a “pull” mechanism based on sender re-
quests and update replies.
Receiver advertisements (RAs) are issued by nodes peri-

odically and/or when they advertise new content-based ad-
dresses. An RA carries the content-based address as well as
the identifier of its issuer, and its purpose is to push routing
information from the issuer (receiver) out to all the potential
senders. The propagation of an RA follows the broadcast
tree rooted at the issuer node, and sets up reverse forward-
ing paths towards the issuer. Specifically, at each node, the
predicate advertised by an RA is added (i.e., combined in
a logical disjunction) to the predicate associated with the
interface that is on the reverse path to the issuer. If this
logical combination generates a new predicate for that in-
terface, then the node continues the propagation of the RA.
Otherwise, the node simply stops propagating the RA. No-
tice that by pruning the propagation of RAs in this latter
case, content-based routers avoid advertising content-based
addresses along paths that are already set up with the neces-
sary forwarding state. Notice also that, by the same pruning
rule, RAs can only “widen” the selection of content-based
addresses in routing tables. This effect is balanced by the
use of sender requests.
A router uses a sender request (SR) to collect routing

information from other routers. SRs are issued on a reg-
ular basis by each node, and are designed to pull content-
based routing information from receivers back to senders.
An SR flows from its issuer to every other node, following
the broadcast tree rooted at the issuer. Routers respond to
SRs by generating update replies (URs). URs are returned
back to the issuer of the SR, on the reverse path of the
SR, accumulating content-based addresses along the way.
Specifically, leaf nodes immediately return a UR containing
their content-based address. Intermediate nodes compute

I1

f1.1
string dest=
int price < 500

f1.2

string stock =DYS
int quantity > 1000
int price < 500

I2

f2.1

string airline =UA
string orig =Chicago
string dest=Atlanta

f2.2
string dest=New York
int price < 200

f2.3 string orig =Chicago

f2.4
string airline =UA
bool upgradeable= true

I3 f3.1
string stock =MSFT
int price < 200

Figure 2: Example Contents of a Forwarding Table

their UR by combining (in a logical disjunction) their own
content-based address with the content-based addresses re-
ported by the URs received from routers downstream from
the issuer. Eventually, the issuer of the SR receives one UR
per interface, each one carrying the combined content-based
address of the nodes reachable through that interface.

2.2 Content-Based Forwarding and Problem
Statement

Following the routing scheme described above, we propose
a forwarding process consisting of the combination of broad-
cast forwarding and content-based forwarding. In this paper
we focus on the design of the content-based forwarding al-
gorithm and assume the availability of a generic broadcast
forwarding function.
Without loss of generality, we assume that the output

of the given broadcast forwarding function for a message
m originating at a node s is a set of output interfaces B.
For example, with a broadcast protocol that uses minimal
source-based trees, B is the set of links downstream on the
directed, shortest-paths spanning tree rooted in s, whereas
with reverse-path broadcast forwarding [10] B is the com-
plete set of interfaces of the router when m is received over
the link that is on the (reverse) unicast path to s.
We also assume that the content-based routing protocol

maintains a content-based forwarding table. The table rep-
resents a map between interfaces and predicates, where a
predicate pi associated with interface i represents the union
of the predicates advertised by downstream nodes reachable
through i or, in general, a superset thereof. Figure 2 shows
an example of a content-based forwarding table (the details
of this table are explained in Section 4).
Given this modularization of the broadcast routing and

forwarding functions, and of the content-based routing func-
tion, we define content-based forwarding as a function CBF
of three inputs: a message m, a set of broadcast output
interfaces B, and a content-based forwarding table T =
{p1, p2, . . . , pI}, where I is the total number of interfaces.
The function computes the subset of the broadcast output
B that includes all the interfaces in T associated with a
predicate matched by m. Formally:

CBF(m, B, T ) = {i : i ∈ B ∧ matches(pi, m)}
Our goal is to design a fast algorithm for CBF.
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3. RELATED WORK AND CONTRIBU-
TIONS OF THIS PAPER

In order to place our work within the proper context, we
first discuss the concept of content-based networking in rela-
tion to other research efforts in the general area of advanced
network services, and then relate our proposed algorithm to
other forwarding and matching algorithms.

IP Multicast. Content-based networking can be seen as an
extension of a multicast network service such as IP multi-
cast [11]. The two service models are similar in that they
both allow senders and receivers to communicate indirectly
through a logical rendezvous point, but differ significantly
in their flexibility. Formally, this difference can be charac-
terized as follows: the multicast model allows senders and
receivers to create and refer to partitions of the information
space, while the content-based model allows senders to use
a completely open information space, and receivers to select
information from arbitrary subsets of that space. In prac-
tice, this means that the IP multicast service is well suited
to streaming media, where information is channeled in a
relatively small number of groups, and where group mem-
bers are interested in receiving everything that is sent to the
group. Conversely, content-based networking is intended to
better support distributed applications, where application
components need fine-grained selection of the information
they exchange. This view of the IP multicast model and the
difference between it and the content-based model have also
been pointed out elsewhere [9, 15].

Extended Multicast Models.Stoica et al. [18] have pro-
posed the internet indirection infrastructure (i3 ), as a plat-
form to implement various forms of advanced network ser-
vices, including multicast, anycast, and mobility. The ser-
vice model of i3 provides a rendezvous-based communica-
tion service similar to that of IP multicast, but with an
extended “join” semantics. Clearly, i3 and our content-
based networking model have similar goals, in that they
are intended to better support advanced distributed appli-
cations. However, they are based on rather different design
decisions: i3 uses a single identifier as a logical rendezvous
point, whereas our content-based model uses structured in-
formation and more powerful selection predicates.

Content-Addressable Network and Content Routing.
Despite the similarity in terminology, the content-based net-
working model presented in this paper has practically no re-
lationship to the model of content-addressable network pro-
posed by Ratnasamy et al. [17]. As they use it, the term
“content-addressable network” indicates what amounts to
a lookup service that maps keys (usually resource identi-
fiers such as file names) to keys (usually locations). An-
other work that uses similar terminology is that of Gitter
and Cheriton [13]. Gitter and Cheriton propose a “content
routing” scheme whereby names of resources are pushed into
the network, and where some routers are capable of forward-
ing packets based on the name of the destination resource.
This content routing service model is quite different from
our content-based service in both goals and functionality.

Packet Classification.Some applications, including intru-
sion detection systems, firewalls, and differentiated services,

require routers to make forwarding decisions based on an
extended set of header fields, or even payload data. This
decision process, also called packet classification, has been
studied extensively and admits fast solutions [3]. The al-
gorithms developed for packet classification, however, are
applicable only to a reduced subset of our content-based
forwarding problem. The reason for this incompatibility
is twofold. Firstly, in packet classification, the selection is
made by looking up a limited set of predefined fields. This
gives these algorithms direct access to the values of fields
of interest, and also allows them to construct specialized in-
dexes for their specific data types. Conversely, messages in a
content-based network have a less rigid structure, consisting
of arbitrary sets of attributes in which each attribute is iden-
tified by its name. This requires an additional search process
and more conservative matching strategies. Secondly, exist-
ing packet classification algorithms are unicast in nature,
whereas content-based forwarding is inherently multicast.

Intentional Naming.The idea of content-based network-
ing is also related to the idea of an intentional naming sys-
tem (INS) proposed by Adjie-Winoto et al. [1]. With INS,
a server announces its services with an “intentional” name,
while a client addresses a message to a server with a query
that specifies the desired properties of the service. INS can
act both as a name-resolution service or a “late-binding”
delivery service. In the first case, INS returns a set of IP
addresses, while in the second case, INS forwards the mes-
sage to any one or all the servers it finds.
One significant difference between the INS model and our

content-based model is in the expressive power of names
versus predicates. Names in INS are essentially an ordered
conjunction of equality or “don’t care” constraints. Instead,
predicates in content-based networking are a disjunctive nor-
mal form (unordered disjunction of conjunctions) of a larger
set of constraints, including inequality (<, >, and 	=) and
string operators such as substring, prefix, and suffix, appli-
cable to a richer set of types (strings, numbers, booleans).
This difference has a significant impact on both the evalu-
ation (forwarding) and propagation (routing) of predicates.
We do not see how the architecture and algorithms proposed
by Adjie-Winoto et al. can be adapted to the more expres-
sive language of content-based networking.
Another difference is in the approach to routing and for-

warding. INS is based on a single data structure to serve as
both a forwarding and routing table. We believe that this
approach has serious problems. In fact, we used this same
approach in our design and implementation of the Siena
publish/subscribe service, only to realize that, while con-
ceptually simpler, it forces the use of data structures and
algorithms that introduce unacceptable performance com-
promises for the forwarding function or the routing func-
tion, or both. Again, the separation of concerns for these
two functions is an integral part of our current approach.
The general routing strategy is also a differentiator be-

tween our approach and INS. INS propagates intentional
names everywhere, while our strategy is to limit the propa-
gation of predicates using their semantic relations (see Sec-
tion 2.1). Notice that this strategy is not applicable to INS
because it conflicts with its name-resolution function. In
fact, in order to be able to resolve names directly, every
router in INS must maintain the name records for the entire
network.
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SDI Problem.Yan and Garcia-Molina first suggested the
idea of building indexes of predicates [20]. However, their
context was quite different from ours. They were interested
in better solutions to the SDI (selective dissemination of in-
formation) problem, which they characterize as finding the
set of users interested in a document newly added to some
collection of documents. An example application is a noti-
fication service for a digital library. The interests of users
are represented by what are called profiles. The profiles are
compared against a new document to determine a match.
A document in this setting is treated as a set of words,
and a profile is simply a conjunction of words. A profile
matches a document if the document contains all the words
in the profile. Yan and Garcia-Molina recognized that in-
dexing the profiles (i.e., the predicates) could greatly speed
up the matching function in the presence of large numbers
of profiles. They developed a system called SIFT to demon-
strate their ideas [21]. Yan and Garcia-Molina also describe
an early prototype of a distributed service [21]. However,
the purpose of that service is to offer increased reliabil-
ity through replication, not act as a network of store-and-
forward routers.

Event Matching in Publish/Subscribe Systems.More re-
cently, several researchers have studied the problem of evalu-
ating a possibly large number of predicates against message-
like data (as opposed to a large document) in the domain of
filter matching for publish/subscribe systems. For this prob-
lem, various forms of decision trees and indexing structures
for subscriptions have been proposed. These efforts can be
classified into two broad categories based on the strategy
used to search the predicate space. The first approach is to
start from the attribute constraints derived from the full set
of subscriptions, and to move through them consulting the
attributes appearing in the message. This approach is used
in the form of a matching tree by Gough and Smith [14] and
by Aguilera et al. [2]. It is also used in the form of a binary
decision diagram by Campailla et al. [6]. The opposite ap-
proach is to start from the attributes of the message, and
to move through them consulting the constraints. This is
the approach used by Yan and Garcia-Molina in SIFT, if
we consider a new document to be a “message” whose “at-
tributes” are formed from the set of words appearing in the
document. It is also the approach used by Fabret et al. in
their publish/subscribe system Le Subscribe [12]. Le Sub-
scribe goes beyond the SIFT indexing scheme by providing a
main-memory matching algorithm that is “processor cache
conscious”, and by providing heuristic optimizations based
on a clustering of subscriptions that share the same equality
constraints over the same attributes.

Contributions.The work presented in this paper generally
conforms to the second approach. We use the indexing data
structure developed by Yan and Garcia-Molina as a starting
point. In particular, we adopt their scheme for maintaining
a global index of attribute constraints whose selection, based
on the attributes of the input message, leads to the rapid
identification of matching conjunctions. (Details are given
in Section 4.) However, we have extended their ideas signifi-
cantly, both to enhance the functionality of the matching al-
gorithm and to make it appropriate for use in the forwarding
function of a content-based network. The extensions include
the following contributions.

• We extended the set of types and operators that can
be used in predicates. SIFT is limited to strings
(i.e., “words”) and the equality operator over strings.
Le Subscribe added integers and their associated re-
lational operators. To this we have added the prefix,
suffix, and substring operators for strings. These ad-
ditional operators require the careful design and inte-
gration of whole new indexing structures.

• We added the explicit expression of disjunctions to the
model of predicates.

• Given the presence of disjunctions, we developed a
powerful optimization based on the construction of
what we call a selectivity table. The table is used to
summarize for each attribute in the alphabet of at-
tributes, the subset of predicates for which those at-
tributes are required for matching. For instance, in the
predicate (cr ∧cs)∨(c′r ∧ct), where cr and c′r represent
constraints on attribute r, and cs and ct represent con-
straints on attributes s and t, if the incoming message
does not contain an attribute r, then we know imme-
diately, without further processing, that the predicate
cannot be matched. To give a flavor of the effectiveness
of this optimization, our results for one set of experi-
ments showed that for an alphabet of 1000 attributes
used in 200000 predicates, we can eliminate 131000 of
those predicates by examining just the first 10 of the
1000 entries in the table.

4. FORWARDING ALGORITHM
Recalling the definitions of Section 2, a forwarding ta-

ble is a one-to-one association of predicates to inter-
faces. A predicate is a disjunction of conjunctions of
elementary constraints, and a constraint is a quadruple
〈type,name, op, value〉. For convenience in the following dis-
cussion we refer to conjunctions of constraints simply as fil-
ters. Thus, selection predicates are disjunctions over what
we call filters.
An example of the logical content of a forwarding table

is shown in Figure 2, where Is is an interface and fs.t is a
filter in the disjunction of filters associated with interface Is.
Constraints on individual attributes within a filter are shown
in the third column of the table. Although not evident in
this particular example, identical filters can in general be
associated with more than one interface, just as identical
constraints can be associated with more than one filter.
Forwarding an incoming message m amounts to comput-

ing the set of interfaces associated with a predicate match-
ing m. Because each interface is associated with exactly one
predicate, in the following discussion we use the terms inter-
face and predicate interchangeably. The forwarding function
that we have developed is an evolution of a basic matching
algorithm, which in turn is founded on a particular index
structure representing the forwarding table. This basic al-
gorithm is known as the counting algorithm, and has been
applied to the matching problem in the context of central-
ized publish/subscribe systems [12, 20]. These previous ap-
plications of the counting algorithm have only dealt with
predicates that were conjunctions, not disjunctions.
In order to describe our extended version of the algorithm,

we first give a high-level view of the structure of the forward-
ing table and then introduce a simple variant of the count-
ing algorithm that handles disjunctions. This variant can
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Figure 3: Representation of the Forwarding Table
of Figure 2

exploit the presence of disjunctions to optimize the match-
ing process somewhat. Further optimizations are described
in sections 4.2 and 4.3.

4.1 Forwarding Table and the Extended
Counting Algorithm

At a high level, the forwarding table is organized as a two-
part, left-to-right structure. The left-hand side is an index of
all the individual constraints found in all the predicates as-
sociated with all the neighbors of the content-based router.
The outputs of the left-hand side (i.e., the individual con-
straints lying at the ends of index paths) are connected as
boolean inputs to the right-hand side of the structure; if the
algorithm arrives at a particular constraint after traversing
the index, then the constraint has been found to be true
for the message. The right-hand side implements a network
of logical connections representing the conjunctions of con-
straints into filters and the disjunction of filters into the
predicates of interfaces. Figure 3 shows a schematic view of
that data structure for the example of Figure 2.
Notice that the forwarding table is constructed and used

as a “dictionary” data structure. This means that it is opti-
mized for the lookup operation, while modifications are han-
dled by rebuilding the table as a whole. This design choice
is based on the assumption that message traffic (i.e., lookup
operations) will dominate over control traffic (i.e., modifica-
tion operations). Notice also that modification operations
can be appropriately buffered, and therefore performed at a
manageable rate.
Based on this general data structure, the counting algo-

rithm proceeds as follows. For a given message m, it iter-
ates through the attributes a1, a2, . . . , ak of m. For each at-
tribute ai, it finds the constraints ci,1, ci,2, . . . ci,ni matched
by ai using the left-hand-side index of the forwarding ta-
ble. Then, iterating through all the matched constraints
c1,1, c1,2, . . . c1,n1 . . . ck,1, ck,2, . . . ck,nk

, it finds the matched

filters using the right-hand-side boolean network.

proc counting CBF(message m) {
map<filter,int> counters = ∅
set<interface> matched = ∅
foreach a in m {

set<constraint> C = matching constraints(a)
foreach c in C {

foreach f in c.filters {
if f.interface 	∈ matched {

if f 	∈ counters {
counters := counters ∪ 〈f,0〉

}
counters[f] := counters[f] + 1
if counters[f] = f.size {

output(m,f.interface)
matched := matched ∪ {f.interface}
if |matched| = total interface count {

return } } } } } }
}

Figure 4: Pseudocode of the Counting Algorithm

Figure 4 shows the counting algorithm in pseudocode.
The algorithm uses two running data structures to main-
tain state during the matching process. The first structure
is a table of counters (hence the name of the algorithm) for
partially matched filters. The second data structure is a set
containing the interfaces to which the message should be for-
warded. For each constraint found through the constraint
index, the algorithm increments the counter of all the filters
linked from that constraint. When a counter associated with
filter f reaches the total number of constraints linked to f ,
the filter is satisfied and the algorithm adds the interface
linked from f to the set of matched interfaces.
The main difference between this extended counting algo-

rithm and its more basic counterpart is that having disjunc-
tions of filters allows us to use the set of matched interfaces
to shortcut the evaluation of the filters. In particular, we
can eliminate a lookup in the table of counters for all the
filters linked to an interface that has already been matched.
Moreover, as an additional shortcut, we can terminate the
execution of the whole process for a message as soon as the
set of matched interfaces contains the complete set of neigh-
bor interfaces, since we know that further processing cannot
provide any additional information. Notice that all the sets
and set operations in the forwarding algorithm can be im-
plemented very efficiently with bit vectors.
Our extended counting algorithm is really only the start-

ing point for the optimizations leading to a fast forwarding
algorithm. In the remainder of this section we describe two
of those optimizations, each focusing on one of the two sides
of the forwarding table. Evaluations of the effectiveness of
the optimizations are provided in Section 5.

4.2 Multi-Operator Index
The index forming the left-hand side of the forwarding

table is meant to speed up the process of finding the con-
straints that are satisfied by an attribute of an incoming
message. Obviously, the first stage in the index should be
based on the constrained attribute’s name and type. In our
implementation we use a straightforward combination of a
standard ternary search trie (TST) for the strings represent-
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ing attribute names, and then a simple switch on the type.
Once we have selected the right name and type, we use

subindexes that exploit specific properties of each constraint
operator. For example, indexing equality constraints is
an immediate application of traditional indexes, since it is
equivalent to indexing values. To index less-than constraints
on integer attributes 〈int, name, <, k1〉, 〈int,name, <, k2〉,
. . . , 〈int,name, <, kn〉, we can simply maintain the con-
straints ordered according to their constant value (a sorted
vector would suffice). Then, to find all the constraints
matched by a value x, we simply walk through the index
going from the bottom to the top, finding all the constraints
with constant value greater than x. A similar structure can
be used for greater-than constraints. Notice that this im-
plementation of indexes for integer constraints is optimal,
since the complexity of the search operation is on the or-
der of the size of the output (i.e., the number of matching
constraints) plus the complexity of an exact match search
in a table that can be optimized using well-known searching
techniques. Figure 5 depicts an index for integer constraints
processed against a corresponding attribute in a message.
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Figure 5: Example of Integer Constraint Indexing

As mentioned in Section 3, previous algorithms were de-
signed without consideration of the prefix, suffix, and sub-
string operators for strings. We could use the same approach
for these operators as we do for the integer operators, namely
to create and maintain a separate subindex for each. In fact,
this was what we did in an earlier version of our algorithm.
However, that approach is not optimal for strings, since it
requires a potentially large number of comparisons. In or-
der to support the fuller set of string operators with a very
efficient index structure, we developed a multi-operator in-
dex for string constraints capable of supporting equality,
less-than, and greater-than operators, as well as the prefix,
suffix, and substring operators all in a single index. The
basic skeleton of this index is a TST that we have extended
in three ways.

• We added the capability of matching partial strings,
which we use to represent prefix and substring con-
straints.

• We added a pair of “crown” lists, which we use to link
the sequence of less-than and greater-than constraints
inserted as leaves in the TST.

• We added a pair of backtrack functions that are nec-
essary to move from a partial match to the (alphabet-
ically) closest complete match, which we use to jump
to the less-than and greater-than chains.

An example of this extended TST is depicted in Figure 6.
In addition to the basic TST structure, we have two types
of nodes, representing partial and complete matches, respec-
tively. Nodes that represent partial matches link prefix (pf )
and substring (ss) constraints. Nodes that represent com-
plete matches link equals (=), less-than (<), greater-than
(>), and suffix (sf ) operators. Nodes representing complete
matches are also cross linked through two singly-linked lists
representing the chains of less-than and greater-than oper-
ators. They link every complete match node to the nearest
less-than or greater-than constraint. The less-than chain is
depicted in Figure 6 using a dashed line. For sake of clarity,
only the less-than chain is shown.
The lookup function starts from the first character of the

input string, and uses a slightly modified TST lookup sub-
function. This subfunction recognizes partial matches along
the path through the TST, in addition to final, complete
matches. When a partial-match node is reached, the func-
tion returns the prefix constraint and/or the substring con-
straint associated with that partial match. The function also
returns a pointer to the corresponding internal node and
a pointer to the position reached within the input string.
These two pointers can then be passed to the same lookup
function to continue the search from the previous partial
match node. At some point, this process will terminate,
either because it cannot move forward in the TST and/or
because it has reached the end of the input string. If the
final node touched by the lookup process is a leaf node of
the TST (i.e., if it contains the terminator character #),
then the lookup function returns the corresponding equal-
ity, inequality, and suffix constraints. If the terminal node
is not a leaf (i.e., if no complete match was found), then the
lookup function backtracks to the two closest leaf nodes, one
preceding and the other following the final node in alphabet-
ical order. From a matching final node or from the closest
matching nodes, the lookup function can immediately jump
onto the less-than and greater-than chains, reaching one-by-
one all the matching less-than and greater-than constraints.
The lookup process is then repeated for each character

of the input string, ignoring prefix, equality, less-than, and
greater-than operators. This iteration allows us to identify
all the substring and suffix constraints.
The complexity of the complete lookup function is on the

order of l times the complexity of a TST search plus the size
of the output—that is, O(l(logN+ l)+ |result|, where l is the
length of the input string, and N is the number of strings
in the TST.

4.3 Exploiting Attribute Selectivity
Intuitively, we can save time in processing a message if

we can eliminate interfaces from consideration as soon as
possible. Eliminating an interface can mean eliminating the
evaluation of potentially many filters, and in turn, poten-
tially many constraints. We can see that our counting algo-
rithm already succeeds in doing this to a certain degree, by
making use of the set of matched interfaces, as described in
Section 4.1.
However, we can go further than this, based on the fol-

lowing reasoning. Let us call an attribute name a the de-
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Figure 6: Extended TST that Implements a Multi-Operator Index for String Constraints

terminant attribute name for interface I , if every filter of
I contains at least one constraint on a. Because filters are
conjunctions, if a message does not contain an attribute a,
then the message cannot possibly be forwarded through in-
terface I and so can be ignored during the processing of the
message. For example, in the forwarding table of Figure 2,
“price” is a determinant for interfaces I1 and I3, “stock”
is a determinant for I3, and no other attribute name is a
determinant for any other interface.
We use the concept of a determinant to pre-compute from

the set of predicates what we call a selectivity table, which
is a map that associates attribute names with the interfaces
for which that attribute name is a determinant. Comput-
ing the selectivity table is straightforward, and amounts to
computing the intersection of the attribute names of all the
filters for each interface. Note that it would also be straight-
forward to combine the name with a type for the purpose of
establishing selectivity, but to keep the presentation simple,
we do not discuss this point.
When a message arrives, we can use the table to eas-

ily calculate—without incurring the cost of traversing the
forwarding table—an initial set of interfaces that will not
match the message. We perform this pre-processing step by
iterating through the selectivity table, excluding all the in-
terfaces associated with determinant attributes that are not
present in the message. In the subsequent processing of the
message, we use this set exactly in the same way we use
the set of matched interfaces. In fact, we use a single set
to annotate both excluded and already matched interfaces.
The resulting algorithm is identical to the extended count-
ing algorithm, except for the introduction of the selectivity
processing step (Figure 7).

In order to maximize the effectiveness of the pre-
processing, we sort the selectivity table in descending or-
der by the cardinality of the set of excluded interfaces.
This way the pre-processing function will always encounter
the most selective names first. We parameterize the pre-
processing function by the number of pre-processing rounds,
by which we mean how far down the selectivity table the
pre-processing function will traverse. With zero rounds, the
selective forwarding algorithm reduces to the counting al-
gorithm, since the selectivity table is ignored. As we in-
crease the number of rounds we should see an increase in
the number of interfaces determined to be safely ignored,
which should in turn lead to a performance improvement.
However, adding more and more pre-processing rounds, and
thus going farther and farther down in the selectivity table,
will add fewer and fewer additional interfaces, at the cost
of more and more lookup operations on the message and
set-union operations on the data structure. Therefore, we
would expect to see a continuous decline in performance be-
yond a certain point. This is borne out by the experiments
described in the next section.

5. EVALUATION
In order to evaluate our algorithm, we implemented it and

studied its performance using a series of synthetic workloads
derived from various combinations of predicates, interfaces,
and messages. The experiments we conducted are intended
to provide an initial exploration of the parameter space. The
main parameter values chosen for those experiments were
based on our experience with a particular class of appli-
cations of content-based networking, namely those using a
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proc selectivity CBF(m, B, T) {
map<filter,int> counters := ∅
set<interface> ifs to ignore := all ifs − B
ifs to ignore := ifs to ignore − pre process(m)
foreach a in m {

set<constraint> C = matching constraints(T,a)
foreach c in C {

foreach f in c.filters {
if f.interface ∈ ifs to ignore {

if f 	∈ counters
counters := counters ∪ 〈f,0〉

counters[f] := counters[f] + 1
if counters[f] = f.size {

output(m,f.interface)
ifs to ignore := ifs to ignore ∪ {f.interface}
if |ifs to ignore| = total interface count

return } } } } }
}

map<name, set<interface>> selectivity
int pre processing rounds

proc pre process(m) {
set<interface> result = ∅
int rounds = pre processing rounds
foreach 〈a,s〉 in selectivity {

if rounds = 0
return result

rounds := rounds − 1
if a 	∈ m {
result := result ∪ s
if |result| = total interface count

return result
} }

return result
}

Figure 7: Pseudocode of the Forwarding Algorithm with Selectivity Table and Pre-Processing

publish/subscribe communication pattern. In this section
we present the results of our evaluation.1

5.1 Experimental Setup and Parameters
We implemented our algorithm in C++ and ran all the

experiments on a 950Mhz computer with 512Mb of main
memory. In addition to the main algorithm and data struc-
tures, we created some auxiliary programs to generate pa-
rameterized loads of filters and messages. In particular,
we have identified and used the parameters listed in Ta-
ble 1. We performed all the experiments with 100 messages
(M = 100), each one having between 1 and 19 attributes
(al = 1,ah = 19, and an average a = 10).

M number of messages
al, ah number of attributes per message, uniform in

[al, ah) range
I number of interfaces (= number of predicates)

fl, fh number of filters per interface, uniform in [fl, fh)
range

cl, ch number of constraints per filter, uniform in
[cl, ch) range

Da distribution function for attribute names
Dc distribution function for constraint names
Dt distribution function for data types in both fil-

ters and messages
Dos distribution function for operators in string con-

straints
Doi distribution function for operators in integer

constraints
Ds distribution function for string values in both

filters and messages
Di distribution function for integer values in both

filters and messages

Table 1: Scenario Definition Parameters

Roughly speaking, the primary measure of scalability is
the “size” of the forwarding table, which is well characterized
1Our implementation and workload generator are available on line
at http://www.cs.colorado.edu/serl/cbn/forwarding/.

by the total number of elementary constraints C ≈ I×f ×c,
where f = 1

2
(fl + fh − 1) and c = 1

2
(cl + ch − 1). We

experimented with forwarding tables of up to five million
constraints, distributed in various ways among filters, and
filters among interfaces. Specifically, we fixed the range of
constraints per filter, with cl = 1 and ch = 10, and we
used different numbers of interfaces I and different ratios
of filters per interface, maintaining fl = 1 and varying fh.
The choice of a fixed range of constraints per filter, with an
average of five constraints per filter, is based on practical
considerations on the type of filters we expect to be posed
by typical end users. The number of interfaces I gives an
indication of the characteristics of a router, its position, and
it role in the larger content-based network. The resulting
total number of filters F = I × 1

2
fh is a rough measure of

the total size of the network in terms of nodes and end users,
and therefore an important measure of scalability.
For attribute names, we experimented with a set of 1000

elements (|Da| = 1000). In order to use realistic names, we
composed our sample sets by selecting random words out
of a common dictionary, and we weighted our set of names
using a Zipf distribution. We then used the same set of
words for both attributes in messages and constraints in fil-
ters (and therefore Dc = Da). Notice that while this may be
a simplification in defining the experiments, in fact it pro-
duces the most challenging scenarios for a forwarding algo-
rithm. The reason is that having two completely overlapping
sets of names maximizes the chances of having matching at-
tributes and constraints. In the opposite, extreme case of
two completely disjoint name sets (one for attributes, and
one for constraints) there would be no matches at all, and
the time complexity for the forwarding algorithm would be
O(a logC).
For attribute values, we used a combination of dictionary

values for strings and a range for integers. For strings, we
compiled a list of words by extracting 1000 words from the
dictionary. For integer values we used a range of 100 values.
For both integers and strings, we used a uniform distribu-
tion to select values. We used the same distribution of string
and integer values for both the values in messages and the
values in constraints. Notice once again that having a uni-
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fied set of values increases the possibilities of having positive
matches between constraints and attributes, thereby adding
complexity to the matching process.
For attribute types and constraint types we used the same

distribution Dt: 50% strings and 50% integers. For opera-
tors in integer constraints, the distribution Doi was 60%
equality, 20% less-than, and 20% greater-than. Finally, for
operators in string constraints, the distribution Dos was 35%
equality, 15% prefix, 15% suffix, 15% substring, 10% less-
than, and 10% greater-than.

5.2 Basic Results
Figures 8 and 9 show a summary of the results of our ex-

periments. The graphs show the matching time per message
over the total number of constraints in the forwarding table,
which ranges from a few hundred to over five million. Every
graph shows pairs of curves, representing the cases with no
selectivity table pre-processing rounds (r = 0) and with 10
rounds (r = 10), respectively.
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Figure 8: Performance of the Forwarding Algorithm
(Centralized Architecture)

Figure 8 represents the degenerate situation in which we
model a centralized router, namely where the forwarding
table has exactly one filter per interface. This is the worst
case for our algorithm, yet its performance is arguably quite
reasonable, taking only about 330 milliseconds to match a
message in the presence of over five million constraints, cor-
responding to more or less one million filters and one mil-
lion interfaces. The most important observation we make
concerning the graph of Figure 8 is that our optimization
based on the selectivity table is particularly effective in this
extremely difficult case, achieving a reduction of matching
time of up to 40%.
Figure 9 shows that the performance of the forwarding

algorithm in scenarios more closely modeling a network of
content-based routers, with a fixed number of interfaces,
is significantly better, both in the absolute values and in
the general sublinear behavior. Notice that in these cases,
the curves with zero rounds are essentially indistinguish-
able from the corresponding ones with 10 rounds of pre-
processing. On the one hand, this says that our optimiza-
tion has no effect in configurations with a high ratio of filters
per interface. This is not surprising, since in the presence of
many filters for each interface, it becomes highly unlikely for
an attribute name to be present in all the filters of an inter-
face, thus reducing the overall selectivity of each individual
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Figure 9: Performance of the Forwarding Algorithm
(Distributed Architecture)

attribute. On the other hand, from the same observation,
we can conclude that our optimization does not add mea-
surable cost, even in cases in which the simple version of the
algorithm is already extremely fast.
It would seem that a fundamental parameter in deter-

mining the behavior of the algorithm would be the ratio of
filters to interfaces, maintaining a fixed total number of con-
straints (i.e., essentially a fixed number of filters, and a fixed
forwarding table size). This intuition is confirmed by the re-
sults shown in Figure 10. The graph expresses very well the
effect of handling disjunctions, and in particular, it shows
that the forwarding algorithm performs at its best with very
large disjunctions. On the left-hand side of Figure 10, we see
once again the positive effect of excluding interfaces using
the selectivity table.

0

2

4

6

8

10

12

14

16

1 10 100 1000 10000 100000

m
at

ch
in

g 
ti

m
e 

(m
s)

avg number of filters per interface

matching time per message (C=500000)

r=10
r=0

Figure 10: Performance of the Forwarding Algo-
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5.3 Sensitivity to the Number of Pre-
Processing Rounds

The idea of using the selectivity table is to reduce the pro-
cessing time by pre-selecting interfaces that can be safely ig-
nored during the forwarding function. The exact amount of
this reduction depends essentially on the combination of two
independent factors. The first is the level of selectivity of
each name, which is purely a characteristic of the predicate

172



set. The second is the number of pre-processing rounds. As
we point out in Section 4.3, the initial effect of adding rounds
is to exclude more interfaces from the main processing func-
tion. However, after a certain point, this effect should fade
due to the reduced selectivity of names farther down in the
selectivity table, and because each round adds a certain pro-
cessing cost that depends on the number of interfaces.
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Figure 11: Cost/Benefit Analysis of the Pre-
Processing Function with Varying Number of
Rounds

The tension between cost and benefit of the pre-processing
function is exemplified by the experimental results shown in
Figure 11. The two curves represent the advantage of the
pre-processing function as a (percentage) performance gain,
over the simple counting algorithm. The curve that shows
the highest advantage corresponds to the case of five million
constraints. All the experiments are run over forwarding
tables with one filter per interface. The experiments show
that the pre-processing function becomes ineffective and ul-
timately a cost after 50 to 70 rounds. We performed all our
other experiments using 10 rounds.

5.4 Network Effect
The experiments discussed above evaluate the perfor-

mance of our forwarding algorithm, but only by examining
an individual router. The question that arises is whether a
true network of routers would out perform a single, central-
ized router under the same heavy workload. We can answer
this question by comparing the end-to-end latency induced
by the forwarding function in two different scenarios: the
first with a single router, and the second with a combination
of interconnected routers. In both cases we consider a total
of one million filters formed from five million constraints,
where each filter is associated with a distinct destination.
Notice that this configuration represents the worst case for
our optimizations, so we would expect the performance to
be better in practice.
The first configuration corresponds to the curve for I = F

from Figure 8. In this case, the latency is about 350 mil-
liseconds, which corresponds to the matching time of one run
of the forwarding function over the complete set of filters.
The second configuration can be obtained by connecting the
destination nodes through a set of routers with a limited
number of interfaces. Using routers with I interfaces, inter-
connected in an appropriate configuration, we can reach H
destinations with at most 2 logI H hops. In our example,

using routers with 20 interfaces, we can span the network
in at most 12 hops, which would give a worst-case total la-
tency of only about 40 milliseconds, as shown by the curve
for I = 20 in Figure 9. This clearly demonstrates the viabil-
ity of using a network of routers that uses an appropriately
optimized forwarding function.

5.5 Summary of Evaluation
Our experiments have shown that our forwarding algo-

rithm has good absolute performance and good cost amorti-
zation over a variety of loads. In particular, we found that:

• the basic short-circuit evaluation of filters greatly re-
duces processing time in the case where a single mes-
sage may match a large number of filters;

• the use of the selectivity table improves the ability
to short circuit the forwarding function, reducing the
matching time up to 40% in the critical cases of routers
with numerous interfaces and especially in the extreme
case of centralized routers; and

• the use of the selectivity table has no measurable costs
over the basic algorithm.

In summary, the selectivity table proved to reduce forward-
ing costs in the most critical cases, without adding any
penalties in other cases in which the simple matching algo-
rithm already offers good performance. We conclude from
the evaluations that our forwarding algorithm is viable un-
der heavy loads, and that the optimizations we proposed
have significant, positive effects.

6. CONCLUSION
In this paper we have presented the first algorithm de-

signed specifically for the implementation of the forwarding
function of routers in a content-based network. The algo-
rithm is based on earlier work in the area of centralized con-
tent filtering of both large documents and small messages.
Our algorithm refines, adapts, and extends this work for use
in a very different context. We formulated a variant of the
counting algorithm that can handle disjunctive predicates,
and developed optimizations targeted specifically at the dis-
junctions that are the semantics of network interfaces in a
content-based network.
In order to evaluate the algorithm, we created an imple-

mentation and subjected it to a battery of synthetic work-
loads. From these experiments we found that the algorithm
has good overall performance. The experiments also confirm
the validity of our optimization techniques, and the stability
of the algorithm even in circumstances that are suboptimal
for the optimizations.
In the immediate future we plan to integrate our algorithm

into our prototype content-based network architecture. As a
natural progression of this work, we plan to attack the hard
problem of routing in a content-based network. Using logical
relations between predicates, we have already defined the ba-
sic concepts of content-based subnetting and supernetting,
and we have implemented what amounts to a routing table.
Using that as a basis, we plan to study and develop opti-
mized data structures for routing, as well as efficient and
robust routing protocols for content-based networks.
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