
Superstring: A Scalable Service Discovery Protocol
for the Wide-Area Pervasive Environment

Ricky Robinson, Jadwiga Indulska
School of Information Technology and Electrical Engineering

The University of Queensland�
ricky, jaga � @itee.uq.edu.au

Abstract—Arguably, the world has become one large pervasive
computing environment. Our planet is growing a digital skin of
a wide array of sensors, hand-held computers, mobile phones,
laptops, web services and publicly accessible web-cams. Often,
these devices and services are deployed in groups, forming small
communities of interacting devices. Service discovery protocols
allow processes executing on each device to discover services of-
fered by other devices within the community. These communities
can be linked together to form a wide-area pervasive environment,
allowing processes in one group to interact with services in an-
other. However, the costs of communication and the protocols by
which this communication is mediated in the wide-area differ from
those of intra-group, or local-area, communication. Communica-
tion is an expensive operation for small, battery powered devices,
but it is less expensive for servers and workstations, which have a
constant power supply and are connected to high bandwidth net-
works. This paper introduces Superstring, a peer-to-peer service
discovery protocol optimised for use in the wide-area. Its goals are
to minimise computation and memory overhead in the face of large
numbers of resources. It achieves this memory and computation
scalability by distributing the storage cost of service descriptions
and the computation cost of queries over multiple resolvers.

Index Terms—peer-to-peer, pervasive computing, resource dis-
covery, service discovery

I. INTRODUCTION

Service discovery is one of the central components of any
pervasive computing environment [9]. Service discovery proto-
cols allow services (which may be highly specialised devices
such as sensors and web cams, or software services and re-
sources such as online shops and Business-to-Business appli-
cations) to advertise themselves, and clients to issue queries
against these service descriptions. In this way, clients can dis-
cover instances of services that can perform a task the client
wishes to carry out. Service discovery protocols are impor-
tant in pervasive systems because clients do not have a priori
knowledge of services. Also, pervasive environments tend to
be highly dynamic, with clients and services appearing and dis-
appearing from the system.

Several service discovery protocols have emerged in recent
times, often as a constituent in a more general platform for ser-
vice discovery and utilisation. Bluetooth SDP [6], the Sim-
ple Service Discovery Protocol (SSDP) [11] and the discovery
mechanism of Salutation [18] are examples of such discovery

The work reported in this paper has been funded in part by the Co-operative
Research Centre Program through the Department of Industry, Science and
Tourism of the Commonwealth Government of Australia.

mechanisms. Whilst each of these address the issue of the ex-
treme dynamism of pervasive environments, these protocols do
not scale to the wide-area. Rather, they are intended for use
within relatively small communities of devices. Some of these
protocols, SSDP is an exception, attempt to minimise com-
munication overhead, acknowledging the high costs often as-
sociated with the combination of wireless communication and
small, battery powered devices. Whilst the cost of communica-
tion is of primary concern in small groups of devices commu-
nicating over wireless links, this cost is of less concern in the
wide-area, where much of the cost is absorbed by highly ca-
pable servers, connected to high bandwidth networks. In these
wide-area environments, computation costs and memory over-
head are often as important, or more so, than communication
costs. This is evidenced by attempts to curb routing table size
in traditional network protocols such as IP [10]. To achieve
high performance, these tables are kept in main memory, which
is expensive. Service discovery protocols face a similar prob-
lem when the number of advertised resources is vast, as is the
case in wide-area networks. At the cost of higher query latency,
service descriptions can be moved to secondary storage or dis-
tributed across many machines if a high bandwidth network is
available. If the second of these options is taken, then the work
of processing any given query will be shared among multiple
machines. This is of benefit when some queries to be more
popular than others, since under this scheme, no single resolver
will bear the cost of processing these numerous queries.

INS/Twine [4] and Berkeley’s Secure Service Discovery Ser-
vice (SSDS) [8] are two relatively new protocols for wide-
area service discovery. Both of these protocols attempt to
lower the communication cost involved with queries, at the ex-
pense of higher advertisement costs. However, in many circum-
stances, it is beneficial to minimise the advertisement costs in
terms of communication and memory overhead, and to lower
query computation costs for any single resolver, at the cost of
slightly more communication overhead for queries, which can
be achieved as outlined above.

This paper describes Superstring, a service discovery pro-
tocol for wide-area pervasive environments (environments in
which highly dynamic groups of devices and services are con-
nected by more static and more capable infrastructure such as
the Internet). Superstring shifts much of the cost of querying
and advertisement to the fixed infrastructure, and minimises
memory and computation overhead in this infrastructure. The
remainder of this paper is as follows. Section II describes re-
lated work on service discovery protocols for the wide-area.



Section III introduces Superstring, and explains how it achieves
low memory and computation overhead. In Section IV, Super-
string is formally compared to Twine in terms of communica-
tion overhead. A brief discussion of our future work takes place
in Section V and Section VI concludes the paper.

II. RELATED WORK

Twine is one the most recent research efforts in the area of
service discovery. It builds on previous work from MIT. Twine
is integrated with INS, the Intentional Naming System [1]. In
INS, resources and services are named for their function rather
than their location. In other words, a resource name is a service
description, and these descriptions are hierarchical attribute-
value trees. Twine routes service descriptions and queries us-
ing a distributed hashtable (DHT) mechanism. In theory, any
of a number of existing DHTs could be used, including Pas-
try [16] and CAN [14]. In practice, the Twine implementation
utilises Chord [17], which is also from MIT. Clients and ser-
vices are said to exist at the edge of the network. The core is
composed of a peer-to-peer network of Twine resolvers. These
nodes consist of three layers: the Resolver, the StrandMapper
and the KeyRouter. The Resolver layer stores a map of keys to
service descriptions. It also passes strands extracted from ser-
vice descriptions and queries to the StrandMapper layer. The
StrandMapper computes a key from each strand it is given.
These keys, along with the entire service description or query,
are then passed to the KeyRouter layer. The KeyRouter is
the distributed hashtable layer, responsible for routing between
Twine nodes. Each message can be routed to the relevant node
within ������� hops, where � is the number of resolvers.

Upon deployment, a service contacts its nearest Twine re-
solver. The resolver stores the description locally, and extracts
each unique subsequence (from the root to each leaf, as well
as each unique prefix along that path from root to leaf) from
the hierarchical description. A key is computed from each of
these strands. The key determines which resolvers on the net-
work will store a copy of the service description. A client issues
queries to its nearest resolver. A query takes the same form as
a service description, but it may only partially match the adver-
tised service descriptions. The longest strand from the query is
selected, and its hash computed. The resulting key determines
which resolver on the network can resolve the query. The query
is then routed to the appropriate resolver.

Twine uses a soft state mechanism to keep service descrip-
tions fresh, and to avoid situations where the service has dis-
appeared but its description remains in the network. Twine can
achieve fault tolerance by sending each key-service description
pair to 	 nodes, and by routing queries to those 	 nodes.

The Secure Service Discovery Service (SSDS) from Berke-
ley is part of the Ninja project, the goal of which is to build
large scale services from small devices. Unlike the resolvers in
Twine, SSDS resolvers form a hierarchy. The hierarchy can be
based on any arbitrary property, but usually the property chosen
is location. Several hierarchies may co-exist, with each resolver
being a member of multiple hierarchies. If an SSDS server finds
it is being overwhelmed with queries and advertisements, it can
delegate a portion of its domain to a child server. For exam-
ple, if the hierarchy is location based, and a resolver is serving

an entire building, it can delegate child resolvers for each floor
of the building. A question now arises about the mechanism by
which advertisements are propagated and queries are routed be-
tween the SSDS servers in this hierarchy. SSDS utilises Bloom
filters to aggregate service descriptions in a lossy fashion. Each
resolver contains a bit vector for its own service descriptions
and bit vectors for each of its children. It ORs these vectors to-
gether and passes it to its parent. This process continues to the
root node. Queries are hashed and this hash is checked against
the resolver’s own bit vector and that of its children. If all bits
set in the query hash are set in the local vector, the query can be
resolved locally. If there is a match for any of the child vectors,
the query is sent down to the matching child. Otherwise, the
query is passed up to the parent. An artifact of the Bloom filter
mechanism is that it allows false positive results, but no false
negatives. This results in needless forwarding of queries, but
maintains correctness. As the number of services in the system
increases, the more likely it is that false positives occur.

VIA [7] provides a mechanism by which resolvers organise
themselves into a hierarchical cluster based on some specific
application. Initially, a resolver receives all queries by listening
to the multicast channel. If the resolver decides it is receiving
too many irrelevant queries (queries for resources that it knows
nothing about), the resolver may elect to “get behind” another
resolver. That is, the resolver becomes the child of another re-
solver. In this fashion, a cluster of resolvers may be formed.
The top level resolver must receive all queries, but it only passes
relevant queries to its children. Therefore, a subset of the re-
solvers in the system (all the top level nodes) are involved in
query resolution for all queries. If the cluster is specific to MP3
files, then the top level resolver filters out any queries that are
unrelated to MP3s and passes other queries to its children. The
next level of the hierarchy might filter on the artist’s name. Each
child resolver is responsible for a particular value of the “artist”
attribute. For example, one may filter for artist name=’John
Lennon’ whilst another child filters for artist name=’Khaled’.
Much of VIA’s overhead comes from maintaining these hierar-
chies. Thus, a VIA resolver must offset the cost of receiving
irrelevant queries against the cost of becoming part of a hier-
archy, and maintaining its position in the hierarchy. VIA also
allows the formation of a hierarchy of clusters. Again, there is
a tradeoff between the cost of processing irrelevant queries, and
the cost of maintaining the cluster hierarchy.

III. SUPERSTRING

Superstring is a service discovery protocol designed for en-
vironments where the services are extremely dynamic, and
where queries are resolved in the core of the network, which
is relatively static and composed of capable servers and high-
bandwidth networks. An example of such an environment is
where groups of measuring instruments are deployed in the
field, and only have intermittent connectivity to an orbiting
satellite or an aircraft circling the deployment zone. The client
requires readings from some of these instruments and is located
some distance from the deployment zone. Such scenarios are
common in scientific investigations of geological phenomena
and biological ecosystems [5]. There are also military scenar-
ios which fit this description [12]. In such environments, inter-



mittent service is a common characteristic, often brought about
by inclement weather conditions and other factors such as in-
termittent line of site to a base station. Superstring can also be
used for discovering highly dynamic services or resources on
the Internet.

As Twine’s designers argue, peer-to-peer networks can po-
tentially scale to larger numbers of nodes than hierarchical net-
works in which the root node may become a bottleneck. How-
ever, peer-to-peer protocols have their own problems. For ex-
ample, Gnutella has been shown to scale poorly because of its
flooding based protocol [15]. Recently, the idea of distributed
hashtables (DHTs) has been put forward by several research
groups. DHTs create a peer-to-peer overlay network that, given
a key, can find the node at which the corresponding value is
stored within �
����� hops, where � is the number of nodes in
the network. If objects are uniquely identified by a name, the
name can be hashed, yielding a key for that object. If a ser-
vice discovery protocol were to be built on top of a DHT, what
can be used as the key for the service description? A service
description is inherently more complex than a name or object
identifier. It may be a hierarchy of attributes and values. Also,
a query may be much smaller than a description that matches it.
Queries need not contain every attribute contained in descrip-
tions, and values may be wildcarded. An implication of this
is that obtaining a single key by hashing the entire service de-
scription is not a valid option since very few queries will match
the service description exactly. Twine solves the problem by
computing several keys from a single service description. If�

keys are produced from the description, then the service de-
scription is stored at

�
resolvers. A single key is extracted from

a query, and this is used to route the query to the resolver re-
sponsible for that key. The query is processed at that resolver.
Each message is routed to the resolver within 
����
������� hops.
Therefore, queries can be performed relatively cheaply in terms
of the number of resolvers contacted. But Twine’s storage costs
are high, and it is likely that some resolvers will process a
much larger proportion of queries than others. This is due to
the fact that, in most circumstances, queries are not normally
distributed. If queries in the pervasive environment bear any
resemblance to queries issued to web search engines, the dis-
tribution of query terms will be closer to a power-law distri-
bution [2]. It cannot be assumed that queries will be targeted
evenly at the various kinds of resources and services available.
Undoubtedly, some services will be far more popular than oth-
ers. For Twine, this means that some resolvers will process a
substantially larger amount of queries than other resolvers, and
this cost is not shared. Superstring acknowledges this power-
law distribution of service types and queries, and seeks to min-
imise the burden on any single node. It distributes the cost of
storage and query resolution among several nodes. While this
set of nodes will collectively process more queries than other
nodes in the system, a single resolver is not burdened with this
cost. However, this comes at the price of extra communication
overhead, since queries must be broken up and sent to a larger
number of nodes.

Superstring utilises a DHT data structure, but does so in a
way that optimises memory and computation overhead at the
expense of potentially larger communication requirements than

Twine. Upon deployment, a service sends its service descrip-
tion to its nearest Superstring resolver (note that this resolver
may be on the same device as the service). The resolver pro-
duces a key from the top-level component of the description.
This key is used to route the entire description to the resolver
responsible for that key. When the description arrives at this re-
solver, the resolver removes the top-level component from the
service description. This operation may create several sub-trees
from the description. The resolver hashes each of the top-level
components of the sub-trees and passes the sub-tree to one of its
neighbouring resolvers. It stores the key for each sub-tree with
the ID of the neighbour to which the sub-tree was passed. This
process continues until the bottom of the description is reached.
Each node in the hierarchy stores the name record for the ser-
vice being advertised. In this fashion, a resolution hierarchy is
formed that matches the service description hierarchy exactly.
The query process is similar. The difference is that depending
on its detail, a query need not visit every node in the hierar-
chy, and query results are propagated back up the tree. Query
results consist of the name records of any matching service de-
scriptions. Each internal node computes the intersection of the
name record sets it receives from its children. In this way, when
the results reach the top of the tree, only the name records for
matching services remain. The query is resolved as part of the
routing process. No resolver in the hierarchy solves the entire
query (unless the query is very general and consists only of the
top-level component of the description).

Figure 1 shows the cost of advertising a simple service in
Superstring in terms of the number of resolvers contacted. The
node responsible for the top level attribute of the description is
found in 
������������ . The remaining cost is due to creating the
hierarchy. In general, if the description has � attributes and
values altogether, then the cost is ��������� where � is the
number of values (leaf nodes).

The cost of querying in terms of resolvers contacted is at
least 
����
������� (for the most general of queries). The cost in-
creases for more complex queries with numerous attribute com-
ponents and values. The next section provides a comparison
of INS/Twine and Superstring with respect to communication,
memory and computation costs.

IV. PERFORMANCE

In this section, we compare the performance of Superstring
to Twine. Twine is chosen for comparison because its goals
are similar to that of Superstring, and, in our view it represents
the most scalable resource discovery protocol to date since it
has been shown via mathematical analysis to scale to an envi-
ronment of 100 million resources and 100 thousand resolvers.
Twine has a completely flat peer-to-peer topology. Superstring
combines peer-to-peer and hierarchical topologies. It utilises
a flat topology to discover top-level nodes that specialise in a
particular kind of service. From this top-level node, a hierar-
chy is created which reflects the hierarchical structure of ser-
vice descriptions. Queries are resolved by the specialised hier-
archy. In some respects, this is similar to a process employed
by VIA, however, Superstring does not incur costs for man-
aging the hierarchy. Queries are filtered by the hierarchy, and
name records for matching services are returned to the top-level



Fig. 1. Advertising a web cam

resolver where results are collated and returned to the client.
Highly detailed queries may require each resolver in the hierar-
chy to perform some computation.

As stated, the cost in terms of the number of resolvers con-
tacted during advertisement is 
����
������� , plus the number of at-
tribute components in the service description being advertised.
If there are many leaf nodes in the description, then advertise-
ment is cheaper in Superstring than it is in Twine. In general,
the proportion of leaf nodes to internal nodes is quite high. For
example, in a balanced binary tree, half the nodes are leaves.

Twine descriptions cannot be directly compared with Super-
string descriptions. In Twine, a description is composed of
attribute-value pairs. The attribute names correspond to the
branches of the description tree, and the values correspond to
the nodes. Therefore, the total number of components in the
tree is ��� where � is the number of attributes. Superstring
also utilises a hierarchical description model, but it is not an
attribute-value tree. Rather, all internal nodes are attribute com-
ponents, and all the leaves are values. An attribute is identified
by the composition of attribute components from the root to a
leaf. The number of attribute components in the description is
given by ����� where � is the total number of components in
the description, including values, and � is the number of val-
ues. For Twine,

� ����� (1)

The number of strands produced from a Twine description is

� ���!�#" (2)

where " is the number of attribute-values at the root level.
Thus, for advertisement, the number of resolvers contacted is
bounded by 
�� � �
������� . For Superstring, the number of re-
solvers contacted during discovery is bounded by


��$�
���������&%'���'���(�)� (3)

To determine the circumstances under which Twine and Su-
perstring perform equally well for advertisements, the above
expressions can be equated and ������� subtracted from both
sides. Then their costs are equal when

� � �����$�������*�����'���(� (4)

Substituting for
�

gives

�
����"��'�+�,�������-�����'���(� (5)

Note that if a description has " attribute-values at the top
level, then it must have at least " leaf nodes. Thus, �/.0" al-
ways holds true. Advertising is cheapest for Twine when the



advertisement yields only a single strand. In this case, �1�2" .
�1�!" when �3��� . That is, when the description consists
of one attribute component and a single value. In this case,
both Twine and Superstring are bound by 
����
������� . Therefore,
Superstring can not be outperformed by Twine in terms of the
number of hops required during advertisement. In most cases,
however, descriptions will consist of more than just a single
attribute and value. In these cases, Superstring always outper-
forms Twine, and this decreased cost is considerable if �145" .

The situation is different for queries. For Twine, the num-
ber of resolvers contacted is always bounded by 
����
������� .
For Superstring, it depends on the level of detail in the query,
and whether the query is resolved positively (matching service
found) or negatively (no matching service). In the worst case,
the query cost is the same as advertisement cost, since it is pos-
sible that every branch of the tree must be traversed for a highly
detailed and positively resolved query. The communication cost
for querying is also higher than Twine in this case since re-
sults (name records) are propagated back up the the tree. Twine
will outperform Superstring for queries by up to ���'���(� re-
solvers, if a query contains as much detail as the description or
descriptions it matches. If the number of resolvers contacted
is the only consideration in choosing one resource discovery
protocol over another, then the choice comes down to the dy-
namism of the environment, and the frequency with which ser-
vice descriptions need to be refreshed. In highly dynamic net-
works, the refresh interval must be set low. In this case, it is
entirely possible that advertisement messages for a particular
service are more frequent than queries that match that adver-
tisement. In this case, Superstring has an advantage over Twine.
The ideal environment for Superstring is one in which groups
of highly dynamic devices and services are linked by a fairly
static, high bandwidth network such as the Internet backbone.
In this situation, resolvers only rarely fail or disconnect, since
they form part of the static core. In contrast, the end nodes (ser-
vices) disconnect and move regularly. The refresh interval is set
low to minimise the probability of false positive query results.
The ratio of queries to advertisements (and description refresh
messages) approaches parity. Most of the communication takes
place over high bandwidth links where the cost of communica-
tion is low. Communication costs can be reduced by caching
the results of common queries on a short term basis.

The number of resolvers contacted is not the only consid-
eration for a wide-area resource discovery protocol. Indeed,
memory requirements and computation costs can often be just
as important. As the pervasive environment widens to encom-
pass an ever larger geographical area, the number of services
available for discovery in that area increases. Descriptions for
these services must be stored at resolvers. It is of benefit if the
cost of storing these descriptions can be limited, and the com-
putation costs involved with processing queries can be reduced
for each resolver. The hierarchical structure of Superstring en-
sures no single resolver bears the cost of a popular query, and
does so in a fashion that minimises memory overhead. To be-
gin with, a single service description is distributed over several
nodes. Thus, each resolver stores only a small part of the entire
description. Twine, on the other hand, requires that

�
nodes

store a copy of the entire description. Then, when a query is

routed to one of those
�

resolvers, the query must be processed
against all descriptions contained on that node. In Superstring,
no resolver processes the entire query. Each node in the resolver
hierarchy performs a lookup (which can be performed in loga-
rithmic time) of the next attribute component in the description.
The result is the address of a child resolver to which the remain-
der of the query should be forwarded. If the lookup yields no
child, then the query fails, and an empty result is returned to the
parent. Therefore, while the cumulative computation cost for
any query is exactly the same as for Twine, the cost is shared
among many resolvers.

Aside from these performance comparisons, Superstring has
an advantage over Twine in terms of the flexibility of the query
language. Upon receiving a query from a client, a Twine re-
solver will select the longest strand from the query and hash it
to yield a key. The key determines which resolver will pro-
cess the query. The strand will be comprised of a series of
attribute-value pairs. Although Twine offers the possibility of
issuing queries containing wildcards, indicating “don’t care”
for some value, it is impossible to issue queries containing re-
lational functions such as inequalities. The presence of rela-
tional expressions in queries means that a hash of the strand
containing this expression will not yield the key that is mapped
to the appropriate resolver. The presence of a relational oper-
ator such as occurs in the query resource 6 printer 6 resolu-
tion 65. 100dpi, prevents the strands from hashing to the same
key. Twine’s attribute-value tree structure for descriptions and
queries makes it hard to find a solution to this problem. Su-
perstring, recall, stores all values at the leaves of the tree. To
enable a richer query language, values are hashed neither in the
advertising process nor in the querying process. Thus, queries
may contain complex expressions in place of constant values.

V. ONGOING AND FUTURE WORK

We are currently developing a range of different service dis-
covery models. Superstring is the most mature of the models
developed so far. Superstring takes into account that queries
will usually not be distributed normally over the services that
they match. Rather, some services will be matched far more
often than others due to their popularity. Furthermore, over ex-
tended periods of time, some queries will be issued very fre-
quently, whilst many queries will be issued infrequently. In al-
most all existing resource and service discovery protocols, this
property means that a few resolvers will perform far more work
than most other resolvers. Superstring acknowledges this, and
seeks to distribute the computational overhead among a set of
resolvers. This is a simple example of the use of complex sys-
tems theory in service discovery, but complex systems theory
may yield several other enhancements to service discovery in
the future. Specifically, the models we are developing make
use of complex and biological systems theory. Already, there
are some research groups [3, 13] making use of complex sys-
tems theory in peer-to-peer file sharing applications. We are
attempting to extend the use of complex systems theory to the
realm of service discovery in pervasive environments. We are
also investigating the use of biological phenomena in service
discovery. Ant communities, for example, exhibit properties
of self-organisation as they forage for food resources. Similar



ideas can be used to build a service discovery protocol. How-
ever, so far our biologically based service discovery protocol is
unable to offer the same guarantees that Superstring offers with
respect to never returning false negative results in a scalable
manner. Our biologically based algorithm can give this guar-
antee only if every node is visited. Finally, we have had some
success in combining a biological approach with an approach
similar to Superstring. This system can provide the same guar-
antees as Superstring but is more efficient with respect to com-
munication overhead. It uses the notion of stigmergy (a method
of indirect communication used by ants and other insects) to
optimise query performance. Preliminary analysis suggests that
this final model will form the basis of our future work into wide-
area service discovery protocols.

Concurrently with this work on core service discovery algo-
rithms, we are investigating ways in which to augment these
algorithms to allow scoped discovery. Peer-to-peer protocols,
such as Twine and Superstring, necessarily operate within a flat
routing space, but such a topology does not accurately reflect
the true nature of service organisation. Often, service advertise-
ments and queries should be localised within a particular group
or domain. This domain might reflect organisational boundaries
or any other attribute relevant to a particular system of services.
Local printers, for instance, should not be advertised outside
of the local domain, and queries for them should be restricted
to the local group. If such a service were advertised in Twine,
information about the printer would be propagated to resolvers
throughout the city. A query that matches the printer might
be resolved by a resolver on the other side of the city. These
kinds of advertisements and queries should be scoped to the
local group of services, whilst other queries should be propa-
gated to the world. This needs to be achieved without requiring
an entirely separate algorithm and address space. Moreover,
clients should be able to discover the nearest service within
a constrained scope. Taking the example of a printer, a user
would optimally like to discover the physically nearest printer
that satisfies the issued query. If the nearest printer is off line or
broken, the search should expand to a wider area (perhaps in-
cluding printers on the floors above and below the user’s floor).
If location is part of the service description, then it is viable
that such a system could be built by specifying an expression
in the query instead of specifying exact values. For example,
if the user provides the widest acceptable scope, the applica-
tion could build an expression containing a list of locations in
ascending order of physical distance from the user, instead of
limiting the query to one specific location (returns non-optimal
results in the case of failure of the printer) or not limiting the
scope of the query at all (returns far too many query results).
Such additions to the service discovery protocol enhances both
its scalability and usability.

VI. CONCLUSION

We introduce Superstring, a service discovery protocol op-
timised for environments consisting of highly dynamic groups
of services connected by more capable routing infrastructure.
The set of highly dynamic devices and services such as mobile
phones, laptops, hand-held computers, sensors and web-cams
and the more static Internet backbone is such an environment.

Superstring trades computational overhead for communication
overhead, with the view that such communication overhead can
be tolerated by capable nodes. In highly dynamic environments
where services come and go with a high frequency, the pro-
portion of advertisements to queries is high. Therefore, Super-
string optimises advertisement costs at the expense of higher
costs for queries. Superstring also acknowledges that certain
kinds of services will be more popular than others. As such,
certain queries are issued more frequently than others meaning
that some resolvers will be required to do more work than oth-
ers. Superstring distributes this extra workload over multiple
resolvers so that no single resolver is overly burdened.

REFERENCES

[1] William Adjie-Winoto, Elliot Schwartz, Hari Balakrishnan, and Jeremy
Lilley. The design and implementation of an intentional naming system.
In 17th ACM Symposium on Operating Systems Principles (SOSP 99).
M.I.T. Laboratory for Computer Science, December 1999.

[2] Amanda Spink, Dietmar Wolfram, B. J. Jansen, and Tefko Saracevic.
Searching the Web: The Public and Their Queries. The Journal of the
American Society for Information Science and Technology, 52(3):226–
234, 2001.

[3] Özalp Babaoglu, Hein Meling, and Alberto Montresor. Anthill: A Frame-
work for the Development of Agent-Based Peer-to-Peer Systems. In Pro-
ceedings of the 22nd International Conference on Distributed Computing
Systems, 2002.

[4] Magdalena Balazinska, Hari Balakrishnan, and David Karger.
INS/Twine: A Scalable Peer-to-Peer Architecture for Intentional
Resource Discovery. In Pervasive 2002 - International Conference
on Pervasive Computing, number 2414 in LNCS, pages 195–210.
Springer-Verlag, August 2002.

[5] W. A. Birkemeier, C. E. Long, and K. K. Hathaway. DELILAH,
DUCK94, SandyDuck: Three Nearshore Field Experiments. In Proceed-
ings 25th International Conference on Coastal Engineering, Orlando, FL,
1997.

[6] Bluetooth SIG. Bluetooth Specification version 1.1, February 2001.
[7] Paul Castro, Benjamin Greenstein, Richard R. Muntz, Parviz Kermani,

Chatschik Bisdikian, and Maria Papadopouli. Locating application data
across service discovery domains. Mobile Computing and Networking,
2001.

[8] Steven E. Czerwinski, Ben Y. Zhao, Todd D. Hodes, Anthony D. Joseph,
and Randy H. Katz. An Architecture for a Secure Service Discovery
Service. In Fifth Annual International Conference on Mobile Computing
and Networks (Mobicom ’99), 1999.

[9] Mike Esler, Jeffrey Hightower, Tom Anderson, and Gaetano Borriello.
Next century challenges: Data-centric networking for invisible comput-
ing. In Mobicom, 1999.

[10] V. Fuller, T. Li, J. Yu, and K. Varadhan. RFC 1519: Classless Inter-
Domain Routing (CIDR): an Address Assignment and Aggregation Strat-
egy. IETF Internet Standard, September 1993.

[11] Yaron Y. Goland, Ting Cai, Ye Gu, and Shivaun Albright. Simple Service
Discovery Protocol/1.0. IETF draft specification, October 1999.

[12] J. M. Kahn, R. H. Katz, and K. S. J. Pister. Emerging Challenges: Mobile
Networking for ‘Smart Dust’. Journal of Communication and Networks,
2(3):188–196, September 2000.

[13] Lada A. Adamic, Rajan M. Lukose, Amit R. Puniyani, and Bernado A.
Huberman. Search in power-law networks. Physical Review E, 64, 2001.

[14] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott
Shenker. A Scalable Content-Addressable Network. In Proceedings of
ACM SIGCOMM 2001, pages 161–172, San Diego, CA, 2001.

[15] Jordon Ritter. Why Gnutella Can’t Scale. No, Re-
ally. Technical report, Darkridge Security Solutions,
http://www.darkridge.com/ jpr5/doc/gnutella.html, 2001.

[16] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object loca-
tion and routing for large-scale peer-to-peer systems. In IFIP/ACM In-
ternational Conference on Distributed Systems Platforms (Middleware),
number 2218 in LNCS, pages 329–350, Heidelberg, Germany, November
2001.

[17] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari
Balakrishnan. Chord: A scalable peer-to-peer lookup service for internet
applications. In SIGCOMM ’01. MIT Laboratory for Computer Science,
August 2001.

[18] The Salutation Consortium. Salutation architecture specification (part 1)
v2.0c. Specification, The Salutation Consortium, June 1999.


