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ABSTRACT 
In this paper we describe SelectCast, a self-repairing multi- 
cast overlay routing facility for supporting publish/subscribe 
applications. SelectCast is a peer-to-peer protocol, and lever- 
ages Astrolabe, a secure distributed information manage- 
ment system. SelectCast uses replication to recover quickly 
from transient failures, as well as Astrolabe's aggregation fa- 
cilities to recover from long-term failures or adapt to changes 
in load or QoS requirements. In order to evaluate the scal- 
ability and performance of SelectCast, and compare these 
with other multicast facilities, we built a multicast testing 
facility on NetBed. This paper reports latency and load re- 
sults for SelectCast, compared to both native IP multicast 
and Yoid. 

1. INTRODUCTION 
Many distributed applications require some form of mul- 

ticast. Examples include collaborative applications such as 
teleconferencing and games, news delivery services such as 
a stock ticker, locate services such as expanding ring search, 
as well as video distribution services. Unfortunately, IP- 
level multicast routing is badly supported in today's In- 
ternet. There are various reasons for this. Perhaps most 
importantly, multicast addresses do not aggregate as well 
as do unicast addresses, and the mapping of multicast ad- 
dresses to locations is much more dynamic than for unicast 
addresses. As a consequence, routing tables that support 
multicast may grow very large while being highly dynamic. 
Also, as flow and congestion control for IP-level multicast 
routing is not well understood. ISPs are not eager to deal 
with such problems. 

Peer-to-peer, application-level multicast (ALM) routing is 
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therefore an important alternative to IP multicast, because 
ALM protocols do not require the cooperation of ISPs, and 
because they can support various forms of multicast Quality- 
of-Service beyond those provided by IP multicast, including 
flow and congestion control, buffering, retransmission, and 
filtering. Several ALM protocols have been shown to per- 
form nearly as well as IP multicast in terms of latency, band- 
width, and stress on network links [11, 9]. 

All current Application-Level Multicast Routing Proto- 
cols (ALMRPs) route messages along trees in order to get 
logarithmic scaling behavior with respect to the number of 
receivers (assuming the tree has some bounded maximum 
branching factor and is reasonably well balanced). These 
protocols put an uneven load on the hosts and networks, as 
most hosts (at the leaves of the tree) only receive messages, 
while some hosts, which we call routers, have to forward 
copies of each message to some set of peers. In an ALMRP 
capable of filtering, these routers may also have to analyze 
the content of messages in order to decide what links to for- 
ward the messages to. For satisfactory performance, robust- 
ness, and scale, it is important to select well-provisioned, 
dependable hosts for routers, and to recover quickly from 
their failures. 

Many ALMRPs have been proposed. Our protocol, Se- 
lectCast, goes beyond previous work on ALMRPs in the 
following two ways: 

• SelectCast offers users great flexibility in how to select 
touters. For example, routers can be selected to min- 
imize latency or maximize throughput. The default 
selects routers based on longevity, thereby attempting 
to optimize robustness. The selection may be changed 
at run-time. 

• SelectCast allows senders to specify the set of intended 
destination hosts through the use of a SQL condition 
on selected attributes of such hosts. Note that this 
is different from publish/subscribe systems in which 
the subscribers specify what messages they are inter- 
ested in receiving, either by topic or by a predicate on 
messages. Our strategy is strictly more powerful than 
traditional topic and content-based publish/subscribe 
mechanisms. 

Like several other ALMRPs, our approach is built upon 
a peer-to-peer infrastructure. This infrastructure, Astro- 
labe [18], provides a topology-aware domain hierarchy and 
secure aggregation of attributes associated with the domains. 
We will see that this infrastructure is essential to providing 
the innovative properties of SelectCast. 
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ing  t h e  d i s s e m i n a t i o n  t ree ,  a n d  T C P  for t h e  a c t u a l  
d i s s e m i n a t i o n .  

This paper is organized as follows. In Section 2 we de- 
scribe the SelectCast protocol in detail. An experimental 
evaluation of SelectCast appears in Section 3. Section 4 
surveys related work. Section 6 concludes. 

2. SELECTCAST 
In this section we describe the SelectCast system. As Se- 

lectCast makes extensive use of Astrolabe in order to main- 
tain the dissemination tree (see Figure 1), we start out with 
a quick review of Astrolabe. Readers are referred to [18] 
for an in-depth description and analysis of this secure and 
highly scalable peer-to-peer infrastructure. We then provide 
an overview of the basic concepts of the SelectCast protocol. 
In the following subsections, we describe various details of 
the implementation. 

2.1 Astrolabe 
Astrolabe can most easily be thought of as a peer-to-peer 

implementation of a DNS-like directory service which sup- 
ports on-the-fly aggregation. That  is, the hosts are orga- 
nized in a domain hierarchy, and each domain has a set of 
attributes. The attributes of leaf domains (i.e., hosts) are 
writable, but  the attributes of a non-leaf domain are gen- 
erated by summarizing the attributes of its child domains. 
For example, the domains may have an attr ibute called "up- 
time." Hosts report how long they have been up in their 
respective leaf domain attributes. The "uptime" attributes 
of internal domains could be calculated by, say, taking the 
minimum, and thus report the shortest time that  a host 
has been up in that domain. Astrolabe supports an exten- 
sive set of summarizing functions based on SQL, and these 
aggregation queries can be installed on-the-fly in a secure 
fashion. 

The Astrolabe service runs an agent on each host. Such 
an agent maintains a domain table for every non-leaf domain 
that  it is in. A domain table contains a row for each child 
domain, and a column for each attribute. In each domain 
table of an agent, one of the rows is the agent's own. Except 
for the leaf domain row, which is written directly by the 
corresponding agent, the agent produces its own rows by 

aggregating the tables of the corresponding child domains. 
The rows not owned by the agent are learned through an 
epidemic protocol known as gossip, and which is secured 
using public key cryptography. 

Each domain has an attribute "contacts", containing a 
small set of addresses of agents representing the domain. 
The contact attribute itself is calculated by choosing the 
addresses of the k best agents among the contacts of the 
child domains, where k is a small integer (typically 3), and 
best based on some metric such as minimum load or longest 
uptime. The contacts at tr ibute of a leaf domain is the set of 
the addresses of the corresponding agent, which is typically 
a singleton set. However, an agent may have more than one 
address if it is multi-homed, that is, attached to more than 
one network. 

A separate gossip protocol instance runs for every domain. 
The protocol is run among the contacts of the child domains 
of the domain. Each contact, at regular intervals, chooses 
a sibling domain at random, and then starts a message ex- 
change with a randomly chosen contact for the sibling do- 
main. The message exchange contains essentially their re- 
spective current versions of the parent domain table. The 
tables are merged based on timestamps, and at the end of 
the exchange the resulting tables in the respective agents 
are identical. 

If the gossip protocol is run every T seconds, a contact 
will be involved, on average, in two gossip exchanges per T 
seconds. Due to the randomization, there is some variance 
in this load. Also, in a reasonably balanced tree an agent 
may be a contact of as many as O(log N) domains, where 
N is the total number of agents. Although fairly constant, 
these overheads are not negligible and are apparent in the 
performance measurements provided in Section 3. 

The gossip protocol detects the absence of gossips from 
certain hosts. If this is the case, those hosts are removed 
from the system and the aggregation is automatically recal- 
culated. This possibly results in new contacts being selected 
for domains. Even if all contacts for a domain were to fail 
simultaneously, new contacts will be selected and communi- 
cation with the rest of the Astrolabe hierarchy restored. 

2.2 SelectCast Overview 
SelectCast uses Astrolabe in order to decide how to route 

multicast messages. We will show how we build a single mul- 
ticast forwarding tree, but  SelectCast can be instantiated 
many times (say, dozens) on a single Astrolabe instance. 
The basic idea is as follows. Each domain has an at tr ibute 
called "router" containing the address of a host that  will 
act as a message forwarding agent for that domain. For leaf 
domains, the attr ibute contains the address of the corre- 
sponding host. For internal domains, the "router" at tr ibute 
of one of the child domains is chosen. (We will show differ- 
ent ways of doing so below.) To multicast a message, it is 
first sent to the root domain's router. The router of each 
domain forwards the message to the routers of each of the 
domain's child domains, and so the message is disseminated 
to all hosts. 

For example, in Figure 2, a partial picture of an Astro- 
labe hierarchy is shown. There are six hosts: a sender S 
and receivers A through E. For each domain, we show the 
router for that  domain, which in this example is chosen to be 
the router with the lowest name in alphabetical order. The 
sender S sends the message to the root domain's router, 
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Figure 2: Rout ing  in S e l e c t C a s t .  

which is A. A forwards the message to its child domain's 
routers, which are E and itself. And so on until the leaf do- 
mains are reached. The corresponding tree of routers forms 
the multicast forwarding tree. 

Messages may contain predicates that  the routers use to 
forward messages to child domains selectively. This is how 
SelectCast got its name. The routers apply the predicate 
to the attributes of its child domains. For example, assume 
each domain has an attr ibute called uptime that  contains the 
minimum uptime of the hosts in that  domain. A message 
with the condition "uptime < 180" is then forwarded only 
to those hosts that  have been up less than three minutes. 
Note that, in fact, the message is forwarded only to those 
domains that  contain such hosts. This is a generalization of 
the topic-based publish/subscribe paradigm. As we will see 
later, we can support this efficiently for arbitrarily complex 
queries, and even content-based filtering can be expressed 
this way. 

2.3 Tolerating Churn 
As described above, a router receives and forwards mes- 

sages on behalf of a domain. In case a router fails, Astrolabe 
will automatically select a new router based on an aggrega- 
tion query. However, this process can take a relatively long 
time. In order to recover from failed routers quickly, a do- 
main may have more than one router. Astrolabe's flexible 
aggregation facility allows users to specify how router selec- 
tion is done. For example, if there is a lot of "host churn" 
(hosts joining and leaving rapidly), the user may specify to 
use the three hosts with the largest uptime in a domain. 
This is the default selection. If load balancing is a concern, 
a user may instead specify to use the three hosts with the 
least load. If security is a concern, selection may be based on 
the physical security of hosts. This aggregation query can 
even be changed on-the-fly if requirements change. Note 
that  Astrolabe updates the set of routers not only as hosts 
fail and recover, but also as domain attributes such as load 
and uptime change. 

Typically, the selection is of the form where each non-leaf 

\. 

on receipt(msg): 
for each child of msg.domain 
do 

if msg.filter(child.attrs) 
then 

msg2 := new message; 
msg2.domain := msg.domain + '/' 

+ child.id; 
msg2.filter := msg.filter; 
msg2.data := msg.data; 
send msg2 to 

BEST(child.attrs("routers")); 
fi 

done 

F i g u r e  3: T h e  S e l e c t C a s t  forwarding a lgor i thm.  

domain selects the k best routers from the routers of the child 
domains. Here k is a small positive integer that  determines 
the level of failure masking, and best is some aggregation 
condition such as "maximum uptime," "minimum load," or 
"maximum security." It is even possible to have multiple 
sets of routers for each domain, so that  different messages 
can be routed differently. For example, high throughput 
traffic could use the least loaded routers, while low volume 
but high security traffic could use the most secure routers. 

2.4 Forwarding 
Messages are forwarded from the root domain down to 

the leaf domains. A host may be a router for more than one 
domain, and so when a message arrives at a host, the host 
needs to know for which domain the message is intended 
in order to forward the message to the correct subdomains. 
For example, in Figure 2, host B represents two domains. In 
order to achieve correct forwarding, each message has two 
attributes: 

* d o m a i n :  the parent domain from which the message 
is distributed, initially the root domain "/" ;  

• f i l ter :  the predicate that  is checked before forwarding 
the message to some child domain; 

Any host can act as a router, and executes the algorithm 
of Figure 3. On receipt of a message mug, the host uses As- 
trolabe to iterate over all child domains of msg. domain. For 
each such child domain, the host applies the predicate in the 
message to the attributes of the child domain. If this pred- 
icate evaluates to t rue ,  a new message is forwarded to one 
of the child domain's routers. Each SelectCast router main- 
tains statistics about the child domain's touters in order to 
select the most reliable one. 

The forwarded message is the same as the received mes- 
sage, except that  the identifier of the child domain is ap- 
pended to the domain attr ibute of the message. Thus, if the 
parent domain was "/ny",  and the child domain's local iden- 
tifier was "cornell", then the new domain attribute will be 
"/ny/cornell ." The destination host is obtained by taking 
the "routers" attribute of the child domain, and applying 
the function BEST to it in order to select one of the routers. 
(BEST is as described in Section 2.3.) 

Figure 4 shows the forwarding of two messages from two 
hosts, S1 and $2 in a partial depiction of an Astrolabe hier- 
archy, in which two routers are elected within each domain. 
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F i g u r e  4: F o r w a r d i n g  w i t h  m u l t i p l e  r o u t e r s  a n d  fil- 
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Five hosts are shown with their "uptime" attr ibutes.  In or- 
der for this example to work, Astrolabe has to be configured 
to aggregate the uptime a t t r ibute  in the domains by taking 
the minimum. (In the next subsection we show how to make 
this work for arbi trary queries.) The message sent by host 
S1 uses the filter "uptime < 350" (so that  only those hosts 
tha t  have been up for less than 350 seconds are targeted),  
while the message sent by host $2 contains the "uptime 
< 150" predicate. The figure shows how the messages are 
forwarded to only their intended recipients. 

Note tha t  the forwarding algorithm works no mat te r  what  
initial host is used. Although it may seem natural  to send 
a message to one of the root domain's  routers first, as sug- 
gested in the overview, it is advantageous to send the mes- 
sage to the local host. This way the root routers will not be- 
come bottlenecks. Effectively, instead of having a single for- 
waxding tree, there is a forwarding tree for each child of the 
root domain, resulting in significantly bet ter  performance 
and scalability. For example, in Figure 2, S would have sent 
the message to E as well as to A, thereby off-loading A with 
the responsibility of the first level of forwarding. 

2.5 Filtering 
Publish/subscribe services usually support  either topic-, 

or content-based subscriptions. In a topic-based subscrip- 
tion, each subscriber specifies the list of topics tha t  the sub- 
scriber is interested in, while the publisher specifies for each 
message it sends what the topic is. The simplest way to 
support  this in Astrolabe is to have a boolean a t t r ibute  per 
topic, which is aggregated by logical OR. If there are many 
at tr ibutes,  it may be much more efficient to use Bloom filters 
[4]. This solution uses a single a t t r ibute  tha t  contains essen- 
tially a fixed-size bit  map tha t  is aggregated using bitwise 
OR. Topic names are hashed to a bit  in this bit  map. The 
condition tagged to the message is "BITSET(HASH(topic))". 
In the case of hash collisions, this solution may lead to mes- 
sages being routed to more destinations than strictly neces- 
sary, thus the size of the b i tmap should grow dynamically 
so tha t  the rate of collisions will be acceptably low. 

This technique can easily be generalized for arbitrari ly 
complex filters. Given an arbi t rary predicate P on at t r ibutes  
of domains, each receiver sets a bit  corresponding to a hash 

of P in the Bloom filter in case P evaluates to true at  tha t  
receiver. As a Bloom filter is essentially of constant size, this  
technique scales quite well. Nevertheless, if many predicates 
are used, the Bloom filter has to grow accordingly in order 
to be an effective filter in the top-level domains. The size of 
the Bloom filter controls the trade-off between precision of 
filtering and the space used inside Astrolabe. 

The operations and their results are cached, and recal- 
culated only as a t t r ibutes  change or members come or go. 
Thus, the overhead of filtering in SelectCast is negligible 
compared to the overhead of forwarding. 

Note tha t  the predicates above are predicates on Astro- 
labe at tr ibutes.  In a content-based publish/subscribe sys- 
tem, subscribers specify which messages they are interested 
in by using a predicate on messages. This can be supported 
as follows in SelectCast. Each subscriber enters its predicate 
in a specific at t r ibute,  say interest. These at t r ibutes  are ag- 
gregated by Astrolabe by OR-ing them together. (Our SQL 
engine supports  a general aggregation operator FOLD(), that  
takes two arguments: the a t t r ibute  to be aggregated, and a 
binary operation.) 

Publishers add the following condition onto their mes- 
sages: "EVAL(interest(this))". This condition applies the 
code in the domain's  interest at t r ibute  to the message. (EVAL 
is not a s tandard  SQL operator,  but  a variety of popular  
SQL engines do support  this functionality.) 

In order to make this scale, the aggregated interest at- 
tribute should not be too complex. We intend to add a 
S IM P LIFY 0 operation that  conservatively simplifies the in- 
terest expression (returning TRUE in the limit). The interest 
at t r ibute  would then be generated by "SELECT SIMPLIFY 
(FOLD (interest, or))  AS interesf'. Essentially, SIMPLIFY() 
assumes the role of the Bloom filter, and should return a 
result of maximum size. For example, "uptime < 30 OR 
upt ime < 50" can be simplified to be "uptime < 50". Again, 
if many predicates are in use, this filter is likely relatively 
ineffective in the top-level domains, but  can still be quite 
effective near the leaves where most communication takes 
place. 

2.6 Caching 
Evaluating the predicate in a message for each child do- 

main can be an expensive operation. The predicate needs 
to be parsed and then applied to the at t r ibutes  of each child 
domain. In order to reduce overhead, each host caches the 
outcomes of evaluating predicates for each domain. (Note 
tha t  this technique is only effective for predicates on do- 
main at tr ibutes,  and does not work for content-based pub- 
lish/subscribe.) The cache entry expires after a customiz- 
able amount,  which is typically chosen to be the same as 
Astrolabe 's  dissemination latency so that  no accuracy is sac- 
rificed. 

As a result, if the same filter is used frequently, and the 
message throughput  is high, there is no measurable overhead 
for SelectCast 's  filtering mechanism in the current imple- 
mentation. If the message throughput  is low, the filtering 
overhead is usually of little concern. Thus the only case 
where the overhead is a concern is if the message through- 
put  is high and most messages contain a unique filter. We 
believe tha t  such a scenario is going to be rare in practice, 
and currently offer no solution. 

/ 
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2.7 Flow Control 
So far we have talked about routing with no regard for re- 

liability of message delivery. If we do not implement retrans- 
mission and/or congestion control, our protocol is unlikely 
to be useful. Rather than building our own mechanisms for 
this, SelectCast currently uses standard TCP connections 
for forwarding data between routers. For efficiency, each 
host maintains a cache of TCP connections to other hosts. 

Our implementation uses sockets, which provide some fixed 
amount of buffering in case the send window is full. Back- 
pressure when this buffer is full is provided through EWOUI_D- 
BLOCK error notifications when trying to send a message. 
If this occurs when forwarding a message to some domain's 
router, SelectCast will at tempt to send the message to an- 
other router for the same domain. Only when sending 
fails for all routers of a domain, SelectCast will give up for- 
warding to that domain until Astrolabe selects new routers. 
Applications have limited control over this back-pressure (by 
setting the socket's send buffer size). 

In spite of these efforts, messages can get lost in a va- 
riety of ways as SelectCast does not buffer any messages 
on its own, and does not implement any end-to-end flow 
control mechanism. With limited buffering, such a mecha- 
nism would slow the rate of dissemination down to at most 
what the slowest receiver can accept, and therefore we have 
rejected this notion. SelectCast should therefore be consid- 
ered a best-effort multicast routing mechanism, consistent 
with an end-to-end approach to building reliable applica- 
tions [16]. 

We do intend to offer message logging services in the near 
future to aid applications with requirements for message re- 
covery. Astrolabe can be used to locate and manage such 
logging servers. 

3. EXPERIMENTS 
In this section, we evaluate the performance of SelectCast, 

and compare it to the performance of IP multicast and an- 
other ALMRP, namely ¥oid. 1 The experiments were run 
using implementations on an actual network. Rather than 
looking at maximum message rate, which is a measure that 
depends heavily on the underlying network infrastructure 
and the hosts, we measure the load on the network and the 
hosts. We also present latency numbers for the experimental 
set-up that we used. We ran our experiments on NetBed, 
the Utah Network Testbed [3] (formerly known as Emulab). 
In our experiments, we used Astrolabe hierarchies with a 
branching factor of no more than two (i.e., each domain 
had no more than two members). SelectCast did not use 
any filter for the experiment messages. 2 

All Yoid experiments used Yoid's default configuration 
parameters. One of the members was used as Yoid's ren- 
dezvous server. The experiments used different numbers of 
nodes up to 64 nodes and three different types of network 
topologies. The first topology was a LAN topology in which 
all experiment nodes were connected through a LAN. The 
other two topologies had two node LANs (topo_of_2nodeLAN) 

1The latest version of the protocol, which is the one that 
we used, differs quite substantially from the one described 
in [10]. A description of the version of Yoid that we used 
can be found in a full paper on SelectCast [5]. 
2Because of caching, there is no measurable performance 
overhead for filtering. 

and four node LANs (topo_of_4nodeLAN) connected through 
a backbone, in which one router was assigned to each LAN. 

The LANs were configured with no message delays and no 
loss probability. All nodes were workstation-class computers 
(600 to 850 MHz Pentium with 256-512 MByte RAM and 
100 MBit Ethernet interfaces) and ran Linux. IP-Multicast 
experiments were only conducted on the LAN topology, while 
SelectCast and Yoid experiments were conducted on all topo- 
logies. The experiments used 4, 6, 8, 10, and 14 senders. 
Each sender had to send 500 100-byte messages, while the 
inter-message period was 100 ms. (Again, we are only in- 
terested in load, as maximum message rate is highly de- 
pendent on the platform used.) The senders resided in dif- 
ferent LANs of the topo_of_2nodeLAN topology, and were 
distributed in pairs per LAN for experiments made with the 
topo_of_4nodeLAN topology. The bandwidth used and the 
network load were measured using tcpdump [2]. The net- 
work load is the number of packets sent and received by a 
node per second. 

Below is a summary of the performance results. For a full 
treatment, see [5]. 

3.1 Network Load Results 
We ran experiments using up to 64 nodes for both LAN 

and topo_of_4nodeLAN topologies. Because a router has 
to be assigned to each LAN, there were not enough nodes 
available to run experiments with 64 members using the 
topo_of._2nodeLAN topology on NetBed. 

Node network load results take into consideration two 
types of load: total load and user load. The total load rep- 
resents the total number of network packets sent or received 
by a node per second, while the user load only considers 
those packets that  contain a payload. In other words, the 
user data of a node is the number of packets sent or received 
by the node's ALM system. Most of the remaining packets 
contain TCP acknowledgement messages, and do not gener- 
ate a direct load on the ALM system proper. 

In  the experiments below, we observed that  SelectCast's 
total load is typically about double its user load, while Yoid's 
total load is typically about the same as its user load. This 
is because SeleetCast uses TCP for message forwarding, and 
the inter-packet time is so large that  separate acknowledge- 
ment packets are returned for each data message. The ac- 
knowledgements do not impose much of a load on the hosts, 
however. 

For each experiment, we have computed the mean, maxi- 
mum, and standard deviation for both load types across all 
members. In Figure 5, we show both the maximum user 
load and the maximum total load among all nodes in var- 
ious topologies with four senders. Because the computed 
load values from the SelectCast experiments are the same 
for all topologies, the figure contains only the SelectCast re- 
sults for one topology. Most importantly, the loads appear 
to grow very slowly with the size of the membership. We 
can observe that the maximum total load for SelectCast and 
Yoid is about the same, except that for one topology with 
16 nodes Yoid has unstable behavior during which we see 
an explosion of TCP-level acknowledgements. (Yoid uses a 
mixture of UDP and TCP in order to maintain the tree artd 
improve its latency, although user-level data itself uses UDP 
exclusively.) 

(We observed unstable behavior in Yoid in a variety of ex- 
periments. In all these experiments the number of members 
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is at most 20 and the number of senders is at most 8. In 
these experiments, the rendezvous server has the maximum 
total load, but there are other nodes with unexpectedly large 
total load values as well. For most experiments there is an- 
other node which has its load close to the rendezvous server 
load. We observed that in at least some of these situations 
the high loads are caused by communication between the 
rendezvous server and two or three other nodes.) 

In a dissemination tree, each host receives and forwards 
on average 2 messages for every message sent. As in this 
experiment there are four senders each sending 10 messages 
per second, on average each host transmits and receives a 
total of 80 messages per second. If we look at mean load in 
Figure 6, we observe that  both SelectCast and Yoid behave 
mostly as expected (ignoring TCP-level acknowledgements). 
For IP-multicast this load is halved, as hosts do not have to 
forward packets. Figure 7 shows the standard deviation of 
both user and total load. The standard deviation is gener- 
ally fairly low, although we can again observe the unstable 
behavior in Yoid, while SelectCast has consistent stable be- 
havior. 

In Figure 8 we show the load results of experiments with 
a variable number of senders. As in previous results, Se- 
lectCast values are not topology specific. SelectCast puts a 
slightly higher load on the network than Yoid, but  Select- 
Cast's load on the ALM system is lower than Yoid's. In all 
cases, the load appears to grow linearly with the number of 
senders, as expected and desired. 

3.2 Bandwidth Results 
The bandwidth load represents the number of kbytes sent 

or received by a node per second. We measured the band- 
width load for all experiments described in Section 3.1. For 
each experiment, we computed the mean, maximum and 
standard deviation of bandwidth load across all members. 
The computed values from SelectCast experiments were the 
same for all topologies. 

In Figure 9, we show the maximum bandwidth load in the 
LAN, and topo_of_4nodeLAN topologies with four senders. 
We can see that  the differences between maximum band- 
width values for different topologies behave similarly as those 
between the maximum of total load values shown in Fig- 
ure 5. As observed for network load results, the bandwidth 
load grows slowly with the size of the membership. 

Figure 10 shows the mean bandwidth load. SelectCast's 
bandwidth load is twice as large as Yoid's load because Se- 
lectCast uses TCP for forwarding where each TCP mes- 
sage triggers an acknowledgement while Yoid uses UDP. The 
load imposed by TCP acknowledgements per host for ex- 
periments with 4 senders is around 6 kbytes per second. 
Moreover, Astrolabe's overhead is 30% out of SelectCast's 
load. This explains clearly the difference between Select- 
Cast's bandwidth load and Yoid's load for packets that  con- 
tain data. 

3.3 Latency Results 
We measured maximum message latencies for experiments 

with 56 members on all topologies. A message's maximum 
latency is the time between sending the message and the 
last receipt. For this, members' clocks were synchronized 
using the Network Time Protocol service [1]. Prior to each 
experiment, 25 messages were sent by each member to warm 
up the employed ALM system. For example, SelectCast 

establishes connections between its domains when the first 
message is sent, and caches information about them at every 
router. 

Figure 11 plots the mean and maximum message latencies 
for experiments made with a variable number of senders for 
all test topologies. The first observation is that  the laten- 
cies do not depend much on the number of senders. From 
studying the data we collected, we conjecture that the small 
anomalies are caused by variances in the delay of NTP resyn- 
chronization messages (received from a central server). For 
LAN topologies, SelectCast does significantly worse than 
Yoid. This is because SelectCast does not adjust its hierar- 
chy automatically like Yoid does, and thus a message has to 
travel through many hops (up to seven in the given config- 
uration). 

4. RELATED WORK 
In this section we describe the most relevant ALM sys- 

tems that we are aware of. All of them use trees for dissem- 
inating data. Table 1 presents the most important features 
and functionalities of each ALM system. The Exploits IP 
Multicast column shows which ALM systems leverage (local 
area) IP-multicast. The Server Infrastructure column spec- 
ifies which ALM systems use dedicated servers to multicast 
messages. The Underlying Technology column describes ad- 
ditional technology used to compute the dissemination trees. 
The Shared Tree column specifies if an ALM system uses a 
single shared tree to disseminate data messages, or individ- 
ual trees for each sender. The Adaptivity Metric column 
describes what network metric (bandwidth, latency, or nei- 
ther) is used to adapt to network conditions. 

Bayeux [21] is based on the Tapestry [20] peer-to-peer 
routing technology. Bayeux builds a single-source tree. Un- 
like most other work in this area, which use the set of mem- 
bers to build a multicast tree, Bayeux uses existing Tapestry 
servers for dissemination, even if these servers are not in- 
terested in receiving multicast messages. Bayeux can sup- 
port many groups, each uniquely identified by a session id. 
Tapestry associates a unique root node with each session id. 
When a member wants to join a session, it sends a JOIN 
message, which include the receiver's node id, to the root 
node using Tapestry. Again using Tapestry, the root node 
sends a response, containing the session id, to the receiver 
using the receiver's node id. Each Tapestry node on the re- 
sponse path maintains the set of receivers it is responsible 
for, one for each session id, which is later used for forwarding 
messages. 

Scribe [6] is another ALM system based on a peer-to-peer 
routing substrate. Scribe uses Pastry [15] for this purpose, 
but  both Pastry and Tapestry are quite similar (both are 
based on Plaxton routing [12] and take network locality into 
account). Pastry and Tapestry forward messages differently. 
Pastry uses numerical closeness, while Tapestry uses a com- 
bination of longest prefix and suffix matching. 

Overcast [11] consists of a central source node, and a 
number of Overcast nodes with permanent storage spread 
throughout the Internet. Clients can connect to Overcast 
nodes using HTTP. Overcast organizes its nodes into a dis- 
tr ibution tree rooted at the source. The communication 
between Overcast nodes is made using TCP connections. 
Rather than optimizing the latency of its distribution tree, 
as employed in most ALM systems, Overcast maximizes 
each of its nodes' bandwidths from the source. 
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Yoid C C Latency 
Bayeux ~ Tapestry 
Scribe ~ Scribe 
Overcast C ~ Bandwidth 
Narada DVMRP Latency small groups only 
Scattercast ~ ~ Gossamer/RIP Latency 
CAN-ALM CAN 
SelectCast Astrolabe Configurable 

Tab le  1: A L M  features of  d i f fe rent  A L M  protocols 

Narada [9] is a mesh-based ALM protocol intended for 
relatively small groups. A new member joins the mesh by 
trying to connect to some maximum number of other mem- 
bers chosen from an initial list. This initial choice is made 
purely randomly. Narada attempts to optimize the mesh 
continually so that  for any pair of members the shortest 
path latency in the mesh is comparable to the unicast la- 
tency. To route multicast messages, Narada uses a protocol 
which is similar to the Distance Vector Multicast Routing 
Protocol (DVMRP)[19]. 

The Scattercast architecture is intended for wide-area con- 
tent distribution [8, 7]. It consists of agents, called SCXs, 
that reside worldwide and self-organize in an overlay mesh 
using the Gossamer protocol. Using either static configura- 
tion, or DNS redirection, group members locate the closest 
SCX that they can use to receive and send data. Sources 
announce their intent to send data to their SCXs in order for 
Gossamer to build efficient source-rooted data distribution 
trees (using a variant of RIP). Scattercast leverages local- 
area IP-multicast where available. 

CAN multicast (CAN-ALM) [14] is an ALM system built 
on top of CAN (Content-Addressable Networks) [13], a peer- 
to-peer object location system. Nodes in a CAN form a 
multi-dimensional Cartesian coordinate space. For each mul- 
ticast group, a separate overlay CAN is created, called a 
group CAN. CAN-ALM forwards messages only based on 
the coordinates of sources and neighbors, without the need 
of any additional routing information. 

SelectCast is the only protocol that allows users to specify 
how to select routers, for example, to minimize latency, max- 
imize throughput, or maximize robustness. SelectCast is 
also unique in that  it supports replicated routers for quick re- 
covery from transient failures, in addition to router replace- 
ment for recovery from permanent failures and for adapting 
to changing load and QoS requirements. 

5. FUTURE WORK 

5.1 Hardware Multicast 
Currently, SelectCast does not exploit hardware multicast 

where available. Doing so would not be hard, however, if 
it can be determined which domains are covered by a hard- 
ware multicast mechanism. Such information could be made 

available through Astrolabe as follows. Each domain would 
have a new attr ibute containing the (possibly empty) set 
of available hardware multicast mechanisms. The attribute 
would be aggregated by intersection. In the forwarding loop 
of Figure 3, this at tr ibute would be inspected. If non-empty, 
the message can simply be multicast using any one of the 
mechanisms. 

By using IP multicast where available, SelectCast would 
decrease both the control load and user load on its nodes. 

5.2 Load Distribution 
As described in Section 2.7, each host in SelectCast main- 

tains a cache of TCP connections to other hosts to forward 
data. When a host wants to forward data to a domain, it 
tries to use a cached TCP connection already established 
with a router from the domain. Thus, SelectCast multicast 
all messages from a sender using the same tree. 

By multicasting the messages from a sender using multiple 
trees, SelectCast could balance the load better at the high 
levels of its hierarchy. A host could send a message to a do- 
main by choosing one of the domain's routers based on some 
performance metric (such as latency or buffer availability) 
of its TCP connections to the domain's routers. The trees 
could even be used simultaneously to exploit parallelism. 

5.3 t Fault-resilient Forwarding 
In SelectCast, a failure of a router from a non-leaf domain 

may prevent all members from the domain to receive a mes- 
sage. The situation is eventually resolved when Astrolabe 
elects a new router, but  the hiccup would not be masked. 

SelectCast could receive through a configuration parame- 
ter the desired level I of the fault resilience of its multicast 
operation and, based on it, establish a minimum of I connec- 
tions between the domains involved in multicast operation to 
satisfy the fanlt-resilient specification. A similar technique 
is used in [17]. 

The employed forwarding techniques used to implement 
the fanlt-resilient specification have to use duplicate message 
filters in order for SelectCast to avoid message explosions. 
The duplicate message filters could use sequence numbers 
assigned to messages. 
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6. CONCLUSIONS 
In  this paper, we presented the SelectCast self-organizing 

publish/subscribe facility. We also presented an initial per- 
formanee evaluation of SelectCast when compared to both 
native IP-multicast and Yoid, another self-organizing applica- 
tion-level multicast facility. By looking at SelectCast's per- 
formance results in live experiments with up to 64 members, 
we haw~ gained confidence in that SelectCast will scale well 
to much larger number of members. 
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