
SelectCast - A Scalable and Self-Repairing Multicast
Overlay Routing Facility*

Adrian Bozdog Robbert van Renesse
Department of Computer Science

Cornell University, Ithaca, NY 14853
<adrianb,rvr> @ cs.cornell.edu

Dan Dumitriu
School of Computer and Comm. Sciences

EPFL, Lausanne, Switzerland
danmihai.dumitriu @ epfl.ch

ABSTRACT
In this paper we describe SelectCast, a self-repairing multi-
cast overlay routing facility for supporting publish/subscribe
applications. SelectCast is a peer-to-peer protocol, and lever-
ages Astrolabe, a secure distributed information manage-
ment system. SelectCast uses replication to recover quickly
from transient failures, as well as Astrolabe's aggregation fa-
cilities to recover from long-term failures or adapt to changes
in load or QoS requirements. In order to evaluate the scal-
ability and performance of SelectCast, and compare these
with other multicast facilities, we built a multicast testing
facility on NetBed. This paper reports latency and load re-
sults for SelectCast, compared to both native IP multicast
and Yoid.

1. INTRODUCTION
Many distributed applications require some form of mul-

ticast. Examples include collaborative applications such as
teleconferencing and games, news delivery services such as
a stock ticker, locate services such as expanding ring search,
as well as video distribution services. Unfortunately, IP-
level multicast routing is badly supported in today's In-
ternet. There are various reasons for this. Perhaps most
importantly, multicast addresses do not aggregate as well
as do unicast addresses, and the mapping of multicast ad-
dresses to locations is much more dynamic than for unicast
addresses. As a consequence, routing tables that support
multicast may grow very large while being highly dynamic.
Also, as flow and congestion control for IP-level multicast
routing is not well understood. ISPs are not eager to deal
with such problems.

Peer-to-peer, application-level multicast (ALM) routing is

*This research was funded in part by DARPA/AFRL-
IFGA grant F30602-99-1-0532, in part by a grant under
NASA's REE program administered by JPL, and in part by
AFOSR/MURI grant F49620-02-1-0233. The authors are
also grateful for support from the AFRL/Cornell Informa-
tion Assurance Institute.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SSRS '03, October 31, 2003, Fairfax, Virginia, USA
Copyright 2003 ACM 1-58113-784-2/03/0010 ...$ 5.00.

therefore an important alternative to IP multicast, because
ALM protocols do not require the cooperation of ISPs, and
because they can support various forms of multicast Quality-
of-Service beyond those provided by IP multicast, including
flow and congestion control, buffering, retransmission, and
filtering. Several ALM protocols have been shown to per-
form nearly as well as IP multicast in terms of latency, band-
width, and stress on network links [11, 9].

All current Application-Level Multicast Routing Proto-
cols (ALMRPs) route messages along trees in order to get
logarithmic scaling behavior with respect to the number of
receivers (assuming the tree has some bounded maximum
branching factor and is reasonably well balanced). These
protocols put an uneven load on the hosts and networks, as
most hosts (at the leaves of the tree) only receive messages,
while some hosts, which we call routers, have to forward
copies of each message to some set of peers. In an ALMRP
capable of filtering, these routers may also have to analyze
the content of messages in order to decide what links to for-
ward the messages to. For satisfactory performance, robust-
ness, and scale, it is important to select well-provisioned,
dependable hosts for routers, and to recover quickly from
their failures.

Many ALMRPs have been proposed. Our protocol, Se-
lectCast, goes beyond previous work on ALMRPs in the
following two ways:

• SelectCast offers users great flexibility in how to select
touters. For example, routers can be selected to min-
imize latency or maximize throughput. The default
selects routers based on longevity, thereby attempting
to optimize robustness. The selection may be changed
at run-time.

• SelectCast allows senders to specify the set of intended
destination hosts through the use of a SQL condition
on selected attributes of such hosts. Note that this
is different from publish/subscribe systems in which
the subscribers specify what messages they are inter-
ested in receiving, either by topic or by a predicate on
messages. Our strategy is strictly more powerful than
traditional topic and content-based publish/subscribe
mechanisms.

Like several other ALMRPs, our approach is built upon
a peer-to-peer infrastructure. This infrastructure, Astro-
labe [18], provides a topology-aware domain hierarchy and
secure aggregation of attributes associated with the domains.
We will see that this infrastructure is essential to providing
the innovative properties of SelectCast.

33

SelectCast

I Astrolabe I

[TCP

I ~- ~ Control data < ~> User data i
.

F i g u r e 1: S e l e c t C a s t u s e s A s t r o l a b e for m a i n t a i n -
ing t h e d i s s e m i n a t i o n t ree , a n d T C P for t h e a c t u a l
d i s s e m i n a t i o n .

This paper is organized as follows. In Section 2 we de-
scribe the SelectCast protocol in detail. An experimental
evaluation of SelectCast appears in Section 3. Section 4
surveys related work. Section 6 concludes.

2. SELECTCAST
In this section we describe the SelectCast system. As Se-

lectCast makes extensive use of Astrolabe in order to main-
tain the dissemination tree (see Figure 1), we start out with
a quick review of Astrolabe. Readers are referred to [18]
for an in-depth description and analysis of this secure and
highly scalable peer-to-peer infrastructure. We then provide
an overview of the basic concepts of the SelectCast protocol.
In the following subsections, we describe various details of
the implementation.

2.1 Astrolabe
Astrolabe can most easily be thought of as a peer-to-peer

implementation of a DNS-like directory service which sup-
ports on-the-fly aggregation. That is, the hosts are orga-
nized in a domain hierarchy, and each domain has a set of
attributes. The attributes of leaf domains (i.e., hosts) are
writable, but the attributes of a non-leaf domain are gen-
erated by summarizing the attributes of its child domains.
For example, the domains may have an attr ibute called "up-
time." Hosts report how long they have been up in their
respective leaf domain attributes. The "uptime" attributes
of internal domains could be calculated by, say, taking the
minimum, and thus report the shortest time that a host
has been up in that domain. Astrolabe supports an exten-
sive set of summarizing functions based on SQL, and these
aggregation queries can be installed on-the-fly in a secure
fashion.

The Astrolabe service runs an agent on each host. Such
an agent maintains a domain table for every non-leaf domain
that it is in. A domain table contains a row for each child
domain, and a column for each attribute. In each domain
table of an agent, one of the rows is the agent's own. Except
for the leaf domain row, which is written directly by the
corresponding agent, the agent produces its own rows by

aggregating the tables of the corresponding child domains.
The rows not owned by the agent are learned through an
epidemic protocol known as gossip, and which is secured
using public key cryptography.

Each domain has an attribute "contacts", containing a
small set of addresses of agents representing the domain.
The contact attribute itself is calculated by choosing the
addresses of the k best agents among the contacts of the
child domains, where k is a small integer (typically 3), and
best based on some metric such as minimum load or longest
uptime. The contacts at tr ibute of a leaf domain is the set of
the addresses of the corresponding agent, which is typically
a singleton set. However, an agent may have more than one
address if it is multi-homed, that is, attached to more than
one network.

A separate gossip protocol instance runs for every domain.
The protocol is run among the contacts of the child domains
of the domain. Each contact, at regular intervals, chooses
a sibling domain at random, and then starts a message ex-
change with a randomly chosen contact for the sibling do-
main. The message exchange contains essentially their re-
spective current versions of the parent domain table. The
tables are merged based on timestamps, and at the end of
the exchange the resulting tables in the respective agents
are identical.

If the gossip protocol is run every T seconds, a contact
will be involved, on average, in two gossip exchanges per T
seconds. Due to the randomization, there is some variance
in this load. Also, in a reasonably balanced tree an agent
may be a contact of as many as O(log N) domains, where
N is the total number of agents. Although fairly constant,
these overheads are not negligible and are apparent in the
performance measurements provided in Section 3.

The gossip protocol detects the absence of gossips from
certain hosts. If this is the case, those hosts are removed
from the system and the aggregation is automatically recal-
culated. This possibly results in new contacts being selected
for domains. Even if all contacts for a domain were to fail
simultaneously, new contacts will be selected and communi-
cation with the rest of the Astrolabe hierarchy restored.

2.2 SelectCast Overview
SelectCast uses Astrolabe in order to decide how to route

multicast messages. We will show how we build a single mul-
ticast forwarding tree, but SelectCast can be instantiated
many times (say, dozens) on a single Astrolabe instance.
The basic idea is as follows. Each domain has an at tr ibute
called "router" containing the address of a host that will
act as a message forwarding agent for that domain. For leaf
domains, the attr ibute contains the address of the corre-
sponding host. For internal domains, the "router" at tr ibute
of one of the child domains is chosen. (We will show differ-
ent ways of doing so below.) To multicast a message, it is
first sent to the root domain's router. The router of each
domain forwards the message to the routers of each of the
domain's child domains, and so the message is disseminated
to all hosts.

For example, in Figure 2, a partial picture of an Astro-
labe hierarchy is shown. There are six hosts: a sender S
and receivers A through E. For each domain, we show the
router for that domain, which in this example is chosen to be
the router with the lowest name in alphabetical order. The
sender S sends the message to the root domain's router,

34

/ny/comell/B /ny/cornell/C /ny/cornell/D

Figure 2: Rout ing in S e l e c t C a s t .

which is A. A forwards the message to its child domain's
routers, which are E and itself. And so on until the leaf do-
mains are reached. The corresponding tree of routers forms
the multicast forwarding tree.

Messages may contain predicates that the routers use to
forward messages to child domains selectively. This is how
SelectCast got its name. The routers apply the predicate
to the attributes of its child domains. For example, assume
each domain has an attr ibute called uptime that contains the
minimum uptime of the hosts in that domain. A message
with the condition "uptime < 180" is then forwarded only
to those hosts that have been up less than three minutes.
Note that, in fact, the message is forwarded only to those
domains that contain such hosts. This is a generalization of
the topic-based publish/subscribe paradigm. As we will see
later, we can support this efficiently for arbitrarily complex
queries, and even content-based filtering can be expressed
this way.

2.3 Tolerating Churn
As described above, a router receives and forwards mes-

sages on behalf of a domain. In case a router fails, Astrolabe
will automatically select a new router based on an aggrega-
tion query. However, this process can take a relatively long
time. In order to recover from failed routers quickly, a do-
main may have more than one router. Astrolabe's flexible
aggregation facility allows users to specify how router selec-
tion is done. For example, if there is a lot of "host churn"
(hosts joining and leaving rapidly), the user may specify to
use the three hosts with the largest uptime in a domain.
This is the default selection. If load balancing is a concern,
a user may instead specify to use the three hosts with the
least load. If security is a concern, selection may be based on
the physical security of hosts. This aggregation query can
even be changed on-the-fly if requirements change. Note
that Astrolabe updates the set of routers not only as hosts
fail and recover, but also as domain attributes such as load
and uptime change.

Typically, the selection is of the form where each non-leaf

\.

on receipt(msg):
for each child of msg.domain
do

if msg.filter(child.attrs)
then

msg2 := new message;
msg2.domain := msg.domain + '/'

+ child.id;
msg2.filter := msg.filter;
msg2.data := msg.data;
send msg2 to

BEST(child.attrs("routers"));
fi

done

F i g u r e 3: T h e S e l e c t C a s t forwarding a lgor i thm.

domain selects the k best routers from the routers of the child
domains. Here k is a small positive integer that determines
the level of failure masking, and best is some aggregation
condition such as "maximum uptime," "minimum load," or
"maximum security." It is even possible to have multiple
sets of routers for each domain, so that different messages
can be routed differently. For example, high throughput
traffic could use the least loaded routers, while low volume
but high security traffic could use the most secure routers.

2.4 Forwarding
Messages are forwarded from the root domain down to

the leaf domains. A host may be a router for more than one
domain, and so when a message arrives at a host, the host
needs to know for which domain the message is intended
in order to forward the message to the correct subdomains.
For example, in Figure 2, host B represents two domains. In
order to achieve correct forwarding, each message has two
attributes:

* d o m a i n : the parent domain from which the message
is distributed, initially the root domain "/" ;

• f i l ter : the predicate that is checked before forwarding
the message to some child domain;

Any host can act as a router, and executes the algorithm
of Figure 3. On receipt of a message mug, the host uses As-
trolabe to iterate over all child domains of msg. domain. For
each such child domain, the host applies the predicate in the
message to the attributes of the child domain. If this pred-
icate evaluates to t rue , a new message is forwarded to one
of the child domain's routers. Each SelectCast router main-
tains statistics about the child domain's touters in order to
select the most reliable one.

The forwarded message is the same as the received mes-
sage, except that the identifier of the child domain is ap-
pended to the domain attr ibute of the message. Thus, if the
parent domain was "/ny", and the child domain's local iden-
tifier was "cornell", then the new domain attribute will be
"/ny/cornell ." The destination host is obtained by taking
the "routers" attribute of the child domain, and applying
the function BEST to it in order to select one of the routers.
(BEST is as described in Section 2.3.)

Figure 4 shows the forwarding of two messages from two
hosts, S1 and $2 in a partial depiction of an Astrolabe hier-
archy, in which two routers are elected within each domain.

35

- jj " <

• " ""~k uptlme=120

~. o 240 ~ 630
510 120 ~ ' ~

200

F i g u r e 4: F o r w a r d i n g w i t h m u l t i p l e r o u t e r s a n d fil-
t er s .

Five hosts are shown with their "uptime" attr ibutes. In or-
der for this example to work, Astrolabe has to be configured
to aggregate the uptime a t t r ibute in the domains by taking
the minimum. (In the next subsection we show how to make
this work for arbi trary queries.) The message sent by host
S1 uses the filter "uptime < 350" (so that only those hosts
tha t have been up for less than 350 seconds are targeted),
while the message sent by host $2 contains the "uptime
< 150" predicate. The figure shows how the messages are
forwarded to only their intended recipients.

Note tha t the forwarding algorithm works no mat te r what
initial host is used. Although it may seem natural to send
a message to one of the root domain's routers first, as sug-
gested in the overview, it is advantageous to send the mes-
sage to the local host. This way the root routers will not be-
come bottlenecks. Effectively, instead of having a single for-
waxding tree, there is a forwarding tree for each child of the
root domain, resulting in significantly bet ter performance
and scalability. For example, in Figure 2, S would have sent
the message to E as well as to A, thereby off-loading A with
the responsibility of the first level of forwarding.

2.5 Filtering
Publish/subscribe services usually support either topic-,

or content-based subscriptions. In a topic-based subscrip-
tion, each subscriber specifies the list of topics tha t the sub-
scriber is interested in, while the publisher specifies for each
message it sends what the topic is. The simplest way to
support this in Astrolabe is to have a boolean a t t r ibute per
topic, which is aggregated by logical OR. If there are many
at tr ibutes, it may be much more efficient to use Bloom filters
[4]. This solution uses a single a t t r ibute tha t contains essen-
tially a fixed-size bit map tha t is aggregated using bitwise
OR. Topic names are hashed to a bit in this bit map. The
condition tagged to the message is "BITSET(HASH(topic))".
In the case of hash collisions, this solution may lead to mes-
sages being routed to more destinations than strictly neces-
sary, thus the size of the b i tmap should grow dynamically
so tha t the rate of collisions will be acceptably low.

This technique can easily be generalized for arbitrari ly
complex filters. Given an arbi t rary predicate P on at t r ibutes
of domains, each receiver sets a bit corresponding to a hash

of P in the Bloom filter in case P evaluates to true at tha t
receiver. As a Bloom filter is essentially of constant size, this
technique scales quite well. Nevertheless, if many predicates
are used, the Bloom filter has to grow accordingly in order
to be an effective filter in the top-level domains. The size of
the Bloom filter controls the trade-off between precision of
filtering and the space used inside Astrolabe.

The operations and their results are cached, and recal-
culated only as a t t r ibutes change or members come or go.
Thus, the overhead of filtering in SelectCast is negligible
compared to the overhead of forwarding.

Note tha t the predicates above are predicates on Astro-
labe at tr ibutes. In a content-based publish/subscribe sys-
tem, subscribers specify which messages they are interested
in by using a predicate on messages. This can be supported
as follows in SelectCast. Each subscriber enters its predicate
in a specific at t r ibute, say interest. These at t r ibutes are ag-
gregated by Astrolabe by OR-ing them together. (Our SQL
engine supports a general aggregation operator FOLD(), that
takes two arguments: the a t t r ibute to be aggregated, and a
binary operation.)

Publishers add the following condition onto their mes-
sages: "EVAL(interest(this))". This condition applies the
code in the domain's interest at t r ibute to the message. (EVAL
is not a s tandard SQL operator, but a variety of popular
SQL engines do support this functionality.)

In order to make this scale, the aggregated interest at-
tribute should not be too complex. We intend to add a
S IM P LIFY 0 operation that conservatively simplifies the in-
terest expression (returning TRUE in the limit). The interest
at t r ibute would then be generated by "SELECT SIMPLIFY
(FOLD (interest, or)) AS interesf'. Essentially, SIMPLIFY()
assumes the role of the Bloom filter, and should return a
result of maximum size. For example, "uptime < 30 OR
upt ime < 50" can be simplified to be "uptime < 50". Again,
if many predicates are in use, this filter is likely relatively
ineffective in the top-level domains, but can still be quite
effective near the leaves where most communication takes
place.

2.6 Caching
Evaluating the predicate in a message for each child do-

main can be an expensive operation. The predicate needs
to be parsed and then applied to the at t r ibutes of each child
domain. In order to reduce overhead, each host caches the
outcomes of evaluating predicates for each domain. (Note
tha t this technique is only effective for predicates on do-
main at tr ibutes, and does not work for content-based pub-
lish/subscribe.) The cache entry expires after a customiz-
able amount, which is typically chosen to be the same as
Astrolabe 's dissemination latency so that no accuracy is sac-
rificed.

As a result, if the same filter is used frequently, and the
message throughput is high, there is no measurable overhead
for SelectCast 's filtering mechanism in the current imple-
mentation. If the message throughput is low, the filtering
overhead is usually of little concern. Thus the only case
where the overhead is a concern is if the message through-
put is high and most messages contain a unique filter. We
believe tha t such a scenario is going to be rare in practice,
and currently offer no solution.

/
3 6 ~ /

/

2.7 Flow Control
So far we have talked about routing with no regard for re-

liability of message delivery. If we do not implement retrans-
mission and/or congestion control, our protocol is unlikely
to be useful. Rather than building our own mechanisms for
this, SelectCast currently uses standard TCP connections
for forwarding data between routers. For efficiency, each
host maintains a cache of TCP connections to other hosts.

Our implementation uses sockets, which provide some fixed
amount of buffering in case the send window is full. Back-
pressure when this buffer is full is provided through EWOUI_D-
BLOCK error notifications when trying to send a message.
If this occurs when forwarding a message to some domain's
router, SelectCast will at tempt to send the message to an-
other router for the same domain. Only when sending
fails for all routers of a domain, SelectCast will give up for-
warding to that domain until Astrolabe selects new routers.
Applications have limited control over this back-pressure (by
setting the socket's send buffer size).

In spite of these efforts, messages can get lost in a va-
riety of ways as SelectCast does not buffer any messages
on its own, and does not implement any end-to-end flow
control mechanism. With limited buffering, such a mecha-
nism would slow the rate of dissemination down to at most
what the slowest receiver can accept, and therefore we have
rejected this notion. SelectCast should therefore be consid-
ered a best-effort multicast routing mechanism, consistent
with an end-to-end approach to building reliable applica-
tions [16].

We do intend to offer message logging services in the near
future to aid applications with requirements for message re-
covery. Astrolabe can be used to locate and manage such
logging servers.

3. EXPERIMENTS
In this section, we evaluate the performance of SelectCast,

and compare it to the performance of IP multicast and an-
other ALMRP, namely ¥oid. 1 The experiments were run
using implementations on an actual network. Rather than
looking at maximum message rate, which is a measure that
depends heavily on the underlying network infrastructure
and the hosts, we measure the load on the network and the
hosts. We also present latency numbers for the experimental
set-up that we used. We ran our experiments on NetBed,
the Utah Network Testbed [3] (formerly known as Emulab).
In our experiments, we used Astrolabe hierarchies with a
branching factor of no more than two (i.e., each domain
had no more than two members). SelectCast did not use
any filter for the experiment messages. 2

All Yoid experiments used Yoid's default configuration
parameters. One of the members was used as Yoid's ren-
dezvous server. The experiments used different numbers of
nodes up to 64 nodes and three different types of network
topologies. The first topology was a LAN topology in which
all experiment nodes were connected through a LAN. The
other two topologies had two node LANs (topo_of_2nodeLAN)

1The latest version of the protocol, which is the one that
we used, differs quite substantially from the one described
in [10]. A description of the version of Yoid that we used
can be found in a full paper on SelectCast [5].
2Because of caching, there is no measurable performance
overhead for filtering.

and four node LANs (topo_of_4nodeLAN) connected through
a backbone, in which one router was assigned to each LAN.

The LANs were configured with no message delays and no
loss probability. All nodes were workstation-class computers
(600 to 850 MHz Pentium with 256-512 MByte RAM and
100 MBit Ethernet interfaces) and ran Linux. IP-Multicast
experiments were only conducted on the LAN topology, while
SelectCast and Yoid experiments were conducted on all topo-
logies. The experiments used 4, 6, 8, 10, and 14 senders.
Each sender had to send 500 100-byte messages, while the
inter-message period was 100 ms. (Again, we are only in-
terested in load, as maximum message rate is highly de-
pendent on the platform used.) The senders resided in dif-
ferent LANs of the topo_of_2nodeLAN topology, and were
distributed in pairs per LAN for experiments made with the
topo_of_4nodeLAN topology. The bandwidth used and the
network load were measured using tcpdump [2]. The net-
work load is the number of packets sent and received by a
node per second.

Below is a summary of the performance results. For a full
treatment, see [5].

3.1 Network Load Results
We ran experiments using up to 64 nodes for both LAN

and topo_of_4nodeLAN topologies. Because a router has
to be assigned to each LAN, there were not enough nodes
available to run experiments with 64 members using the
topo_of._2nodeLAN topology on NetBed.

Node network load results take into consideration two
types of load: total load and user load. The total load rep-
resents the total number of network packets sent or received
by a node per second, while the user load only considers
those packets that contain a payload. In other words, the
user data of a node is the number of packets sent or received
by the node's ALM system. Most of the remaining packets
contain TCP acknowledgement messages, and do not gener-
ate a direct load on the ALM system proper.

In the experiments below, we observed that SelectCast's
total load is typically about double its user load, while Yoid's
total load is typically about the same as its user load. This
is because SeleetCast uses TCP for message forwarding, and
the inter-packet time is so large that separate acknowledge-
ment packets are returned for each data message. The ac-
knowledgements do not impose much of a load on the hosts,
however.

For each experiment, we have computed the mean, maxi-
mum, and standard deviation for both load types across all
members. In Figure 5, we show both the maximum user
load and the maximum total load among all nodes in var-
ious topologies with four senders. Because the computed
load values from the SelectCast experiments are the same
for all topologies, the figure contains only the SelectCast re-
sults for one topology. Most importantly, the loads appear
to grow very slowly with the size of the membership. We
can observe that the maximum total load for SelectCast and
Yoid is about the same, except that for one topology with
16 nodes Yoid has unstable behavior during which we see
an explosion of TCP-level acknowledgements. (Yoid uses a
mixture of UDP and TCP in order to maintain the tree artd
improve its latency, although user-level data itself uses UDP
exclusively.)

(We observed unstable behavior in Yoid in a variety of ex-
periments. In all these experiments the number of members

37

1000

800

600

E
4O0

200

The max user load for group sizes with 4 senders

' ' yoid -- t opo -o f~nodeLAN x
yoid -- LAN o

selectcast -----e.--
multicast ---m

. ~ ,,~- --.~ 0

; . . _ . ~ . _ . , = . _ _ ; ? ~ , ; ? ?

8 12 16 20 28 40 48 56 64

nodes

1000

8OO

a)

600

Y,
E
~ 400

o

200

The max total load for group sizes with 4 senders

,. , , ,
yoid -- topo'of"4nodeLAhl x

y o i d - - L A N o

seJeu~cCaasS ~ ::::~:'.~

"",, ..-G, o

__ " - ' i .

8 12 16 20 28 40 48 56 64

nodes

F i g u r e 5: T h e m a x i m u m load for 4 s e n d e r s

200

. • 150

100

o
50

The mean user load for group sizes with 4 senders

' ' yoid -- ' topo-of-4nodeLA~,l x
yoid -- LAN o

selectcast ----~
multicast -----e

l

I - - - - - I - --- I - --- 'III - IF -U- I • -n

I I f I I I I I I

8 1 2 1 6 2 0 2 8 4 0 4 8 5 6 6 4

nodes

200

150

100

50

T h e mean total load for group sizes with 4 senders

~" yoid -- ' topo-of-4nodeLA~,l x
yoid - LAN o

selectcast -----~---
/~. multicast -----=

-.e. 0 G ~ 0 -O
® , , ~ ' ~ / - ~ ® . . ~ ' ~ " ""

~ / - . " ' " ' ~ " : ' " K = = = -
m._~----~ r

i i I I I i i i i

8 1 2 1 6 2 0 2 8 4 0 4 8 5 6 64

nodes

F i g u r e 6: T h e m e a n load for 4 s e n d e r s

300

250

g
200

m
~ 15o
E

• 1o 100

50

The user load std dev for group sizes with 4 senders

' ' ' yoid -- ' topo-of-4nodeLArq x
yoid -- I .AN o

selectcast -----e--
mulUcast - - - n

- ~ . . o - - - e e - ~ e ~ 0

8 1 2 1 6 2 0 2 8 4 0 4 8 5 6 6 4

nodes

300 '

The total load std dev for group sizes with 4 senders

250

~ 200

150

-o 100

o iii
~ e--

B 1 2 1 6 2 0 2 8 40

nodes

yoid -- ' topo-ofJI.nodeLA'N x
yoid -- LAN o

selectcast -.---~---
multicast - - - e

48 56 64

F i g u r e 7: T h e s t a n d a r d d e v i a t i o n o f t h e load for 4 s e n d e r s

3 8

c r }

E

_o

1200

1000

800

600

400

200

0

The max user load for 56 members

yoid -- topo_oL4noc leLAN
yoid -- LAN .--- e - - -

selectoast .---e
multicast - - - - . F ~

............... e • •
I I I I

4 6 8 10 14

senders

1200

1000

800

600
E

400

200

The max total load for 56 members

' yoid -- tol0o of 4nodeLAN
yoid -- LAN ---- B - - .o

selectoast ----e
mulUcast -----~----.

. O . - - ' °

. . - " ' " . . . , [3

. - m • •
"1 I I t

4 6 8 10 14

senders

Figure 8: Results f rom exper iments with fixed number of members

8O

7O

g 6o

50
. .0
~ 40

"~ 30

20

10

The max bandwidth for group sizes with 4 senders

. . . . yoid --' topo-o f~nodeL/kN x
yoid -- LAN o

selectcast -----~
multicast -----~

I I t I I I I I I

8 12 16 20 28 40 48 56 64

nodes

Figure 9: Max imum bandwid th results

8O

70

g 60

50

~ 40

"~ ao

20

10

The mean bandwidth for group sizes with 4 senders

' ' yoid -: topo-of-~Lnodel../~kN
yoid -- LAN o

selectcast . - - -~
multicast -----=---

0 ~ 0 ~ ~ . O ~ ~ O

I I I I I I I I I

8 12 16 20 28 40 48 56 64

nodes

F i g ~ e 10: Mean bandwid th results

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0

The max value of max message latencies for 56 members

se'lectcast-tol0o_of_2nodeLAN z~
selectcast-topo_of 4nodeLAN []

selectcast-LAN ----E
y o i d - t o p o _ o t 2 n o d e L A N -----e
yo id- topo_of_4nodeLA N e-

yo id-LAN ---"~
multicast - - -~ . - -

. . - - E l - Ira

. . . . [] _

~::::::::L:

. 4 ~
® ~ 0 ~

_ _ ~ : : ~:" ' " : : : : :2 : :~ : : :- :.:.-::.-. a

4 6 8 10 14

senders

0.012

0.01

0.008

0.006

0.004

0.002

0

The mean value of max message latencies for 56 members

yo id - toDo_o f2nodeLAN r - - " " "~"
selectcast ----•-

y o i d - t o p o _ o f 4 n o d e L A N I,-
yo id-LAN - - -~
multicast A

. - Q : e - -

, ÷------¢-- - ~ ?

4 6 8 10 14

senders

Figure 11: La tency results for exper iments with 56 members

39

is at most 20 and the number of senders is at most 8. In
these experiments, the rendezvous server has the maximum
total load, but there are other nodes with unexpectedly large
total load values as well. For most experiments there is an-
other node which has its load close to the rendezvous server
load. We observed that in at least some of these situations
the high loads are caused by communication between the
rendezvous server and two or three other nodes.)

In a dissemination tree, each host receives and forwards
on average 2 messages for every message sent. As in this
experiment there are four senders each sending 10 messages
per second, on average each host transmits and receives a
total of 80 messages per second. If we look at mean load in
Figure 6, we observe that both SelectCast and Yoid behave
mostly as expected (ignoring TCP-level acknowledgements).
For IP-multicast this load is halved, as hosts do not have to
forward packets. Figure 7 shows the standard deviation of
both user and total load. The standard deviation is gener-
ally fairly low, although we can again observe the unstable
behavior in Yoid, while SelectCast has consistent stable be-
havior.

In Figure 8 we show the load results of experiments with
a variable number of senders. As in previous results, Se-
lectCast values are not topology specific. SelectCast puts a
slightly higher load on the network than Yoid, but Select-
Cast's load on the ALM system is lower than Yoid's. In all
cases, the load appears to grow linearly with the number of
senders, as expected and desired.

3.2 Bandwidth Results
The bandwidth load represents the number of kbytes sent

or received by a node per second. We measured the band-
width load for all experiments described in Section 3.1. For
each experiment, we computed the mean, maximum and
standard deviation of bandwidth load across all members.
The computed values from SelectCast experiments were the
same for all topologies.

In Figure 9, we show the maximum bandwidth load in the
LAN, and topo_of_4nodeLAN topologies with four senders.
We can see that the differences between maximum band-
width values for different topologies behave similarly as those
between the maximum of total load values shown in Fig-
ure 5. As observed for network load results, the bandwidth
load grows slowly with the size of the membership.

Figure 10 shows the mean bandwidth load. SelectCast's
bandwidth load is twice as large as Yoid's load because Se-
lectCast uses TCP for forwarding where each TCP mes-
sage triggers an acknowledgement while Yoid uses UDP. The
load imposed by TCP acknowledgements per host for ex-
periments with 4 senders is around 6 kbytes per second.
Moreover, Astrolabe's overhead is 30% out of SelectCast's
load. This explains clearly the difference between Select-
Cast's bandwidth load and Yoid's load for packets that con-
tain data.

3.3 Latency Results
We measured maximum message latencies for experiments

with 56 members on all topologies. A message's maximum
latency is the time between sending the message and the
last receipt. For this, members' clocks were synchronized
using the Network Time Protocol service [1]. Prior to each
experiment, 25 messages were sent by each member to warm
up the employed ALM system. For example, SelectCast

establishes connections between its domains when the first
message is sent, and caches information about them at every
router.

Figure 11 plots the mean and maximum message latencies
for experiments made with a variable number of senders for
all test topologies. The first observation is that the laten-
cies do not depend much on the number of senders. From
studying the data we collected, we conjecture that the small
anomalies are caused by variances in the delay of NTP resyn-
chronization messages (received from a central server). For
LAN topologies, SelectCast does significantly worse than
Yoid. This is because SelectCast does not adjust its hierar-
chy automatically like Yoid does, and thus a message has to
travel through many hops (up to seven in the given config-
uration).

4. RELATED WORK
In this section we describe the most relevant ALM sys-

tems that we are aware of. All of them use trees for dissem-
inating data. Table 1 presents the most important features
and functionalities of each ALM system. The Exploits IP
Multicast column shows which ALM systems leverage (local
area) IP-multicast. The Server Infrastructure column spec-
ifies which ALM systems use dedicated servers to multicast
messages. The Underlying Technology column describes ad-
ditional technology used to compute the dissemination trees.
The Shared Tree column specifies if an ALM system uses a
single shared tree to disseminate data messages, or individ-
ual trees for each sender. The Adaptivity Metric column
describes what network metric (bandwidth, latency, or nei-
ther) is used to adapt to network conditions.

Bayeux [21] is based on the Tapestry [20] peer-to-peer
routing technology. Bayeux builds a single-source tree. Un-
like most other work in this area, which use the set of mem-
bers to build a multicast tree, Bayeux uses existing Tapestry
servers for dissemination, even if these servers are not in-
terested in receiving multicast messages. Bayeux can sup-
port many groups, each uniquely identified by a session id.
Tapestry associates a unique root node with each session id.
When a member wants to join a session, it sends a JOIN
message, which include the receiver's node id, to the root
node using Tapestry. Again using Tapestry, the root node
sends a response, containing the session id, to the receiver
using the receiver's node id. Each Tapestry node on the re-
sponse path maintains the set of receivers it is responsible
for, one for each session id, which is later used for forwarding
messages.

Scribe [6] is another ALM system based on a peer-to-peer
routing substrate. Scribe uses Pastry [15] for this purpose,
but both Pastry and Tapestry are quite similar (both are
based on Plaxton routing [12] and take network locality into
account). Pastry and Tapestry forward messages differently.
Pastry uses numerical closeness, while Tapestry uses a com-
bination of longest prefix and suffix matching.

Overcast [11] consists of a central source node, and a
number of Overcast nodes with permanent storage spread
throughout the Internet. Clients can connect to Overcast
nodes using HTTP. Overcast organizes its nodes into a dis-
tr ibution tree rooted at the source. The communication
between Overcast nodes is made using TCP connections.
Rather than optimizing the latency of its distribution tree,
as employed in most ALM systems, Overcast maximizes
each of its nodes' bandwidths from the source.

40

// / j
.9/ /

Yoid C C Latency
Bayeux ~ Tapestry
Scribe ~ Scribe
Overcast C ~ Bandwidth
Narada DVMRP Latency small groups only
Scattercast ~ ~ Gossamer/RIP Latency
CAN-ALM CAN
SelectCast Astrolabe Configurable

Tab le 1: A L M features of d i f fe rent A L M protocols

Narada [9] is a mesh-based ALM protocol intended for
relatively small groups. A new member joins the mesh by
trying to connect to some maximum number of other mem-
bers chosen from an initial list. This initial choice is made
purely randomly. Narada attempts to optimize the mesh
continually so that for any pair of members the shortest
path latency in the mesh is comparable to the unicast la-
tency. To route multicast messages, Narada uses a protocol
which is similar to the Distance Vector Multicast Routing
Protocol (DVMRP)[19].

The Scattercast architecture is intended for wide-area con-
tent distribution [8, 7]. It consists of agents, called SCXs,
that reside worldwide and self-organize in an overlay mesh
using the Gossamer protocol. Using either static configura-
tion, or DNS redirection, group members locate the closest
SCX that they can use to receive and send data. Sources
announce their intent to send data to their SCXs in order for
Gossamer to build efficient source-rooted data distribution
trees (using a variant of RIP). Scattercast leverages local-
area IP-multicast where available.

CAN multicast (CAN-ALM) [14] is an ALM system built
on top of CAN (Content-Addressable Networks) [13], a peer-
to-peer object location system. Nodes in a CAN form a
multi-dimensional Cartesian coordinate space. For each mul-
ticast group, a separate overlay CAN is created, called a
group CAN. CAN-ALM forwards messages only based on
the coordinates of sources and neighbors, without the need
of any additional routing information.

SelectCast is the only protocol that allows users to specify
how to select routers, for example, to minimize latency, max-
imize throughput, or maximize robustness. SelectCast is
also unique in that it supports replicated routers for quick re-
covery from transient failures, in addition to router replace-
ment for recovery from permanent failures and for adapting
to changing load and QoS requirements.

5. FUTURE WORK

5.1 Hardware Multicast
Currently, SelectCast does not exploit hardware multicast

where available. Doing so would not be hard, however, if
it can be determined which domains are covered by a hard-
ware multicast mechanism. Such information could be made

available through Astrolabe as follows. Each domain would
have a new attr ibute containing the (possibly empty) set
of available hardware multicast mechanisms. The attribute
would be aggregated by intersection. In the forwarding loop
of Figure 3, this at tr ibute would be inspected. If non-empty,
the message can simply be multicast using any one of the
mechanisms.

By using IP multicast where available, SelectCast would
decrease both the control load and user load on its nodes.

5.2 Load Distribution
As described in Section 2.7, each host in SelectCast main-

tains a cache of TCP connections to other hosts to forward
data. When a host wants to forward data to a domain, it
tries to use a cached TCP connection already established
with a router from the domain. Thus, SelectCast multicast
all messages from a sender using the same tree.

By multicasting the messages from a sender using multiple
trees, SelectCast could balance the load better at the high
levels of its hierarchy. A host could send a message to a do-
main by choosing one of the domain's routers based on some
performance metric (such as latency or buffer availability)
of its TCP connections to the domain's routers. The trees
could even be used simultaneously to exploit parallelism.

5.3 t Fault-resilient Forwarding
In SelectCast, a failure of a router from a non-leaf domain

may prevent all members from the domain to receive a mes-
sage. The situation is eventually resolved when Astrolabe
elects a new router, but the hiccup would not be masked.

SelectCast could receive through a configuration parame-
ter the desired level I of the fault resilience of its multicast
operation and, based on it, establish a minimum of I connec-
tions between the domains involved in multicast operation to
satisfy the fanlt-resilient specification. A similar technique
is used in [17].

The employed forwarding techniques used to implement
the fanlt-resilient specification have to use duplicate message
filters in order for SelectCast to avoid message explosions.
The duplicate message filters could use sequence numbers
assigned to messages.

41

6. CONCLUSIONS
In this paper, we presented the SelectCast self-organizing

publish/subscribe facility. We also presented an initial per-
formanee evaluation of SelectCast when compared to both
native IP-multicast and Yoid, another self-organizing applica-
tion-level multicast facility. By looking at SelectCast's per-
formance results in live experiments with up to 64 members,
we haw~ gained confidence in that SelectCast will scale well
to much larger number of members.

Acknowledgements
We would like to thank Paul Francis, Ken Birman, Werner
Vogels and the anonymous reviewers for extensive comments
on this paper, and Yuri Pryadkin for his help with the
description of the Yoid protocol as implemented and dis-
tributed. We also like to thank Suman Banerjee, Yang-hua
Chu, Peter Druschel, David Helder, John Janotti, Sharad
Mittal, and Sylvia Ratnasamy for comments on the Related
Work section.

7. REFERENCES
[1] Network Time Protocol.

http://www.eecis.udel.edu/ntp/. University of
Delaware ECE/CIS.

[2] tcpdump, http://www.tcpdump.org.
[3] The Utah Network Testbed. http://www.emulab.net.
[4] B. Bloom. Space/time tradeoffs in hash coding with

allowable errors. Communications of the A CM,
13(7):422-426, July 1970.

[5] A. Bozdog, R. van Renesse, and D. Dumitriu.
Selectcast: Scalable and self-repairing multicast
overlay routing. In submission, 2004.

[6] M. Castro, P. Druschel, A. Kermarrec, and
A. Rowstron. SCRIBE: A large-scale and
decentralized Application-Level Multicast
infrastructure. IEEE Journal on Selected Areas in
Communications (JSA C), 20(8), 2002.

[7] Y. Chawathe. Scattercast: An Architecture for
Internet Broadcast Distribution as an Infrastructure
Service. PhD thesis, University of California, Berkeley,
December 2000.

[8] Y. Chawathe, S. McCanne, and E. Brewer. An
architecture for Internet content distribution as an
infrastructure service. University of California,
Berkeley. Unpublished, 2000.

[9] Y. Chu, S. Rao, and H. Zhang. A case for end system
multicast. In Proceedings of A CM SIGMETRICS,
pages 1-12, Santa Clara, CA, June 2000.

[10] P. Francis, S. Ratnasamy, R. Govindan, and
C. Alaettinoglu. Yoid project.
http://www.icir.org/yoid/.

[11] J. Jannotti, D. Gifford, K. Johnson, M. Kaashoek,
and J. Jr. Overcast: Reliable multicasting with an
overlay network. In Proceedings of the Fourth
Symposium on Operating System Design and
Implementation (USENIX OSDI), pages 197-212,
Santa Clara, CA, October 2000.

[12] C. Plaxton, R. Rajaraman, and A. Richa. Accessing
nearby copies of replicated objects in a distributed
environment. In A CM Symposium on Parallel
Algorithms and Architectures (SPAA), 1997.

[13] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content-addressable network. In
Proceedings of SIGCOMM 2001, UC San Diego,
California, USA, August 2001.

[14] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker.
Application-Level Multicast using
Content-Addressable Networks. In Proceedings of the
Third International Workshop on Networked Group
Communication, London, UK, November 2001.

[15] A. Rowstron and P. Druschel. Pastry: Scalable,
distributed object location and routing for large-scale
peer-to-peer systems. In IFIP/ACM International
Conference on Distributed Systems Platforms
(Middleware), pages 329-350, Heidelberg, Germany,
November 2001.

[16] J. H.. Saltzer, D. P. Reed, and D. D. Clark. End-to-end
arguments in system design. ACM Transactions on
Computer Systems, 2(4):277-288, November 1984.

[17] A. Snoeren, K. Conley, and D. Gifford. Mesh based
content rounting using XML. In Proceedings of the
18th ACM Symposium on Operating Systems
Principles (SOSP' 01), pages 160-173, Chateau Lake
Louise, Banff, Alberta, Canada, October 2001.

[18] R. van Renesse, K. Birman, and W. Vogels. Astrolabe:
A robust and scalable technology for distributed
system monitoring, management and data mining.
ACM Transactions on Computer Systems, 21(2), May
2003.

[19] D. Waitzman, C. Partridge, and S. Deering. Distance
Vector Multicast Routing Protocol. RFC-1075, 1988.

[20] B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An
infrastructure for fanlt-tolerant wide-area location and
routing. Technical Report UCB/CSD-01-1141,
Computer Science Division, U. C. Berkeley, April
2001.

[21] S. Zhuang, B. Zhao, A. Joseph, R. Katz, and
J. Kubiatowicz. Bayeux: An architecture for scalable
and fault-tolerant wide-area data dissemination. In
Proceedings of the Eleventh International Workshop
on Network and Operating System Support for Digital
Audio and Video (NOSSDAV 2001), Port Jefferson,
New York, June 2001.

42

