
The Berlin SPARQL Benchmark

Christian Bizer1 and Andreas Schultz1

1 Freie Universität Berlin, Web-based Systems Group,

Garystr. 21, 14195 Berlin, Germany
christian.bizer@fu-berlin.de, aschultz@mi.fu-berlin.de

Abstract. The SPARQL Query Language for RDF and the SPARQL Protocol
for RDF are implemented by a growing number of storage systems and are used
within enterprise and open Web settings. As SPARQL is taken up by the
community, there is a growing need for benchmarks to compare the
performance of storage systems that expose SPARQL endpoints via the
SPARQL protocol. Such systems include native RDF stores as well as systems
that rewrite SPARQL queries to SQL queries against non-RDF relational
databases. This article introduces the Berlin SPARQL Benchmark (BSBM) for
comparing the performance of native RDF stores with the performance of
SPARQL-to-SQL rewriters across architectures. The benchmark is built around
an e-commerce use case in which a set of products is offered by different
vendors and consumers have posted reviews about products. The benchmark
query mix emulates the search and navigation pattern of a consumer looking for
a product. The article discusses the design of the BSBM benchmark and
presents the results of a benchmark experiment comparing the performance of
four popular RDF stores (Sesame, Virtuoso, Jena TDB, and Jena SDB) with the
performance of two SPARQL-to-SQL rewriters (D2R Server and Virtuoso RDF
Views) as well as the performance of two relational database management
systems (MySQL and Virtuoso RDBMS).

Keywords: Benchmark, scalability, Semantic Web, SPARQL, RDF, relational
database to RDF mapping, SPARQL to SQL rewriting

1. Introduction

The SPARQL Query Language for RDF (Prud'hommeaux & Seaborne 2008) and
the SPARQL Protocol for RDF (Kendall et al, 2008) are increasingly used as a
standardized query API for providing access to datasets on the public Web1 and
within enterprise settings2. Today, most enterprise data is stored in relational
databases. In order to prevent synchronization problems, it is preferable in many
situations to have direct SPARQL access to this data without having to replicate it
into RDF. Such direct access can be provided by SPARQL-to-SQL rewriters that

1 http://esw.w3.org/topic/SparqlEndpoints
2 http://www.w3.org/2001/sw/sweo/public/UseCases/

translate incoming SPARQL queries on the fly into SQL queries against an
application-specific relational schema based on a mapping. The resulting SQL queries
are then executed against the legacy database and the query results are transformed
into a SPARQL result set. An overview of existing work in this space has been
gathered by the W3C RDB2RDF Incubator Group3 and is presented in (Sahoo et al.,
2009).

This article introduces the Berlin SPARQL Benchmark (BSBM) for comparing the
SPARQL query performance of native RDF stores with the performance of SPARQL-
to-SQL rewriters. The benchmark aims to assist application developers in choosing
the right architecture and the right storage system for their requirements. The
benchmark might also be useful for the developers of RDF stores and SPARQL-to-
SQL rewriters as it reveals the strengths and weaknesses of current systems and might
help to improve them in the future.

 The Berlin SPARQL Benchmark was designed in accordance with three goals:
1. The benchmark should allow the comparison of storage systems that expose

SPARQL endpoints across architectures.
2. The benchmark should simulate an enterprise setting where multiple clients

concurrently execute realistic workloads of use case motivated queries against
the systems under test.

3. As the SPARQL query language and the SPARQL protocol are often used
within scenarios that do not rely on heavyweight reasoning but focus on the
integration and visualization of large amounts of data from multiple data
sources, the BSBM benchmark should not be designed to require complex
reasoning but to measure SPARQL query performance against large amounts
of RDF data.

The BSBM benchmark is built around an e-commerce use case, where a set of
products is offered by different vendors and consumers have posted reviews about
products. The benchmark query mix emulates the search and navigation pattern of a
consumer looking for a product.

The implementation of the benchmark consists of a data generator and a test driver.
The data generator supports the creation of arbitrarily large datasets using the number
of products as scale factor. In order to be able to compare the performance of RDF
stores with the performance of SPARQL-to-SQL rewriters, the data generator can
output two representations of the benchmark data: An RDF representation and a
purely relational representation.

The test driver executes sequences of SPARQL queries over the SPARQL protocol
against the system under test (SUT). In order to emulate a realistic workload, the test
driver can simulate multiple clients that concurrently execute query mixes against the
SUT. The queries are parameterized with random values from the benchmark dataset,
in order to make it more difficult for the SUT to apply caching techniques. The test
driver executes a series of warm-up query mixes before the actual performance is
measured in order to benchmark systems under normal working conditions.

The BSBM benchmark also defines a SQL representation of the query mix, which
the test driver can execute via JDBC against relational databases. This allows the
comparison of SPARQL results with the performance of traditional RDBMS.

3 http://www.w3.org/2005/Incubator/rdb2rdf/

This article makes the following contributions to the field of benchmarking
Semantic Web technologies:

1. It complements the field with a use case driven benchmark for comparing the
SPARQL query performance of native RDF stores with the performance of
SPARQL-to-SQL rewriters.

2. It provides guidance to application developers by applying the benchmark to
measure and compare the performance of four popular RDF stores, two
SPARQL-to-SQL rewriters and two relational database management systems.

The remainder of the paper is structured as follows: Section 2 gives an overview of
the benchmark dataset. Section 3 motivates the benchmark query mix and defines the
benchmark queries. Section 4 compares the BSBM benchmark with other benchmarks
for Semantic Web technologies. As a proof of concept, Sections 5 and 6 present the
results of an experiment that applies the BSBM benchmark to compare the
performance of RDF stores and SPARQL-to-SQL rewriters, and sets the results into
relation to the performance of RDBMS.

2. The Benchmark Dataset

The BSBM benchmark is settled in an e-commerce use case in which a set of products
is offered by different vendors and consumers have posted reviews about these
products on various review sites. The benchmark defines an abstract data model for
this use case together with data production rules that allow benchmark datasets to be
scaled to arbitrary sizes using the number of products as scale factor. In order to
compare RDF stores with SPARQL-to-SQL rewriters, the benchmark defines two
concrete representations of the abstract model: An RDF representation and a
relational representation.

The data model contains the following classes: Product, ProductType,
ProductFeature, Producer, Vendor, Offer, Review, and Person. Figure 1 gives an
overview of the properties of each class, the multiplicity of properties, and the
multiplicity ranges into which 99% of the associations between classes fall. In the
following we describe the data production rules that are used to generate datasets for a
given scale factor n.

The data generator creates n product instances. Products are described by a
rdfs:label and a rdfs:comment. Products have between 3 and 5 textual properties. The
values of these properties consist of 5 to 15 words which are randomly chosen from a
dictionary. Products have 3 to 5 numeric properties with property values ranging from
1 to 2000 with a normal distribution.

Products have a type that is part of a type hierarchy. The depth and width of this
subsumption hierarchy depends on the chosen scale factor. The depth of the
hierarchy is calculated as d = round(log10(n))/2 + 1. The branching factor for the
root level of the hierarchy is bfr = 2*round(log10(n)). The branching factor for all
other levels is 8. Every product has one leaf-level product type. In order to run the
benchmark against stores that do not support RDFS inference, the data generator can
forward chain the product hierarchy and add all resulting rdf:type statements to the
dataset.

Figure 1. Overview of the abstract data model.

 Products have a variable number of product features. Two products that share the
same product type also share the same set of possible product features. This set is
determined as follows: Each product type in the type hierarchy is assigned with a
random number of product features. The range of these random numbers is calculated
for product types on level i of the hierarchy as lowerBound = 35 * i / (d * (d+1)/2 –
1) and upperBound = 75 * i / (d * (d+1)/2 – 1), with d being the depth of the
hierarchy. The set of possible features for a specific product type is the union of the
features of this type and all its super-types. For a specific product, each feature from
this set is picked with a probability of 25%.

Products are produced by producers. The number of products per producer follows
a normal distribution with a mean of μ = 50 and a standard deviation of σ = 16.6. New
producers are created until all products are assigned to a producer.

Products are offered by vendors. Vendors are described by a label, a comment, a
homepage URL and a country URI. Countries have the following distribution: US
40%, UK 10%, JP 10%, CN 10%, 5% DE, 5% FR, 5% ES, 5% RU, 5% KR, 5% AT.

There are 20 times n offers. Offers are valid for a specific period and contain a
price ($5-$10000) and the number of days it takes to deliver the product (1-21).
Offers are distributed over products using a normal distribution with the parameters μ
= n/2 and σ = n/4. The number of offers per vendor follows a normal distribution with
the parameters μ = 2000 and σ = 667. New vendors are created until all offers are
assigned to a vendor.

Reviews consist of a title and a review text between 50 and 300 words. Reviews
have up to four ratings with a random integer value between 1 and 10. Each rating is
missing with a probability of 30%. There are 10 times the scale factor n reviews. The

reviews are distributed over products using a normal distribution with the parameters
μ = n/2 and σ = n/4. The number of reviews per reviewer is randomly chosen from a
normal distribution with the parameters μ = 20 and σ = 6.6. New reviewers are
generated until each review is assigned. Reviewers are described by their name,
mailbox checksum and the country the reviewer lives in. The reviewer countries
follow the same distribution as the vendor countries.

Table 1 summarizes the number of instances of each class in BSMB datasets of
different sizes.

Table 1. Number of instances in BSBM datasets of different sizes.

Total number of triples 250K 1M 25M 100M
Number of products 666 2,785 70,812 284,826
Number of product features 2,860 4,745 23,833 47,884
Number of product types 55 151 731 2011
Number of producers 14 60 1422 5,618
Number of vendors 8 34 722 2,854
Number of offers 13,320 55,700 1,416,240 5,696,520
Number of reviewers 339 1432 36,249 146,054
Number of reviews 6,660 27,850 708,120 2,848,260
Total number of instances 23,922 92,757 2,258,129 9,034,027

The BSBM data generator can output an RDF representation and a relational

representation of benchmark datasets. As the data production rules are deterministic,
it is possible to create RDF and relational representations of exactly the same data.

3. The Query Mix

There are two principle options for the design of benchmark query mixes (Gray,
1993): 1. Design the queries to test specific features of the query language or to test
specific data management approaches. 2. Base the query mix on the specific
requirements of a real world use case. The second approach leads to sequences of
more complex queries that test combinations of different language features. With
SP2Bench (Schmidt, et al., 2008a and 2008b), there exists already a benchmark for
SPARQL stores that is designed for the comparison of different RDF data
management approaches. We therefore decided to follow the second approach and
designed the BSBM query mix as a sequence of use case motivated queries that
simulate a realistic workload against the SUT.

The query mix emulates the search and navigation pattern of a consumer looking
for a product. In a real world setting, such a query sequence could for instance be
executed by a shopping portal which is used by consumers to find products and sales
offers.

First, the consumer searches for products that have a specific type and match a
generic set of product features. After looking at basic information about some
matching products, the consumer gets a better idea of what he actually wants and
searches again with a more specific set of features. After going for a second time
through the search results, he searches for products matching two alternative sets of
features and products that are similar to a product that he likes. After narrowing down
the set of potential candidates, the consumer starts to look at offers and recent reviews
for the products that fulfill his requirements. In order to check the trustworthiness of
the reviews, he retrieves background information about the reviewers. He then
decides which product to buy and starts to search for the best price for this product
offered by a vendor that is located in his country and is able to deliver within three
days. After choosing a specific offer, he retrieves all information about the offer and
then transforms the information into another schema in order to save it locally for
future reference. Table 2 shows the BSBM query mix resulting from this search and
navigation path.

Table 2. The BSBM query mix.

1. Query 1: Find products for a given set of generic features.
2. Query 2: Retrieve basic information about a specific product for display purposes.
3. Query 2: Retrieve basic information about a specific product for display purposes.
4. Query 3: Find products having some specific features and not having one feature.
5. Query 2: Retrieve basic information about a specific product for display purposes.
6. Query 2: Retrieve basic information about a specific product for display purposes.
7. Query 4: Find products matching two different sets of features.
8. Query 2: Retrieve basic information about a specific product for display purposes.
9. Query 2: Retrieve basic information about a specific product for display purposes.
10. Query 5: Find products that are similar to a given product.
11. Query 7: Retrieve in-depth information about a product including offers and reviews.
12. Query 7: Retrieve in-depth information about a product including offers and reviews.
13. Query 6: Find products having a label that contains a specific string.
14. Query 7: Retrieve in-depth information about a product including offers and reviews.
15. Query 7: Retrieve in-depth information about a product including offers and reviews.
16. Query 8: Give me recent English language reviews for a specific product.
17. Query 9: Get information about a reviewer.
18. Query 9: Get information about a reviewer.
19. Query 8: Give me recent English language reviews for a specific product.
20. Query 9: Get information about a reviewer.
21. Query 9: Get information about a reviewer.
22. Query 10: Get cheap offers which fulfill the consumer’s delivery requirements.
23. Query 10: Get cheap offers which fulfill the consumer’s delivery requirements.
24. Query 11: Get all information about an offer.
25. Query 12: Export information about an offer into another schema.

The BSBM benchmark defines two representations of the query mix: A SPARQL

representation for benchmarking RDF stores and SPARQL-to-SQL rewriters, and a
SQL representation for benchmarking RDBMS.

SPARQL Representation

Table 3 contains the SPARQL representation of the benchmark queries. The
benchmark queries contain parameters which are enclosed with % chars in the table.
During a test run, these parameters are replaced with random values from the
benchmark dataset. Queries within two consecutive query mixes differ by the chosen
parameters which makes it harder for SUTs to apply query caching. As the test driver
uses a deterministic randomizer, the overall query sequence is the same for test runs
against different SUTs.

Table 3. SPARQL representation of the BSBM queries

Query 1: Find products for a given set of generic features
SELECT DISTINCT ?product ?label
WHERE {
 ?product rdfs:label ?label .
 ?product rdf:type %ProductType% .
 ?product bsbm:productFeature %ProductFeature1% .
 ?product bsbm:productFeature %ProductFeature2% .
 ?product bsbm:productPropertyNumeric1 ?value1 .
 FILTER (?value1 > %x%)}
ORDER BY ?label
LIMIT 10

Query 2: Retrieve basic information about a specific product for display purposes
SELECT ?label ?comment ?producer ?productFeature ?propertyTextual1
 ?propertyTextual2 ?propertyTextual3 ?propertyNumeric1
 ?propertyNumeric2 ?propertyTextual4 ?propertyTextual5
 ?propertyNumeric4
WHERE {
 %ProductXYZ% rdfs:label ?label .
 %ProductXYZ% rdfs:comment ?comment .
 %ProductXYZ% bsbm:producer ?p .
 ?p rdfs:label ?producer .
 %ProductXYZ% dc:publisher ?p .
 %ProductXYZ% bsbm:productFeature ?f .
 ?f rdfs:label ?productFeature .
 %ProductXYZ% bsbm:productPropertyTextual1 ?propertyTextual1 .
 %ProductXYZ% bsbm:productPropertyTextual2 ?propertyTextual2 .
 %ProductXYZ% bsbm:productPropertyTextual3 ?propertyTextual3 .
 %ProductXYZ% bsbm:productPropertyNumeric1 ?propertyNumeric1 .
 %ProductXYZ% bsbm:productPropertyNumeric2 ?propertyNumeric2 .
 OPTIONAL { %ProductXYZ% bsbm:productPropertyTextual4 ?propertyTextual4 }
 OPTIONAL { %ProductXYZ% bsbm:productPropertyTextual5 ?propertyTextual5 }
 OPTIONAL { %ProductXYZ% bsbm:productPropertyNumeric4 ?propertyNumeric4 }}

Query 3: Find products having some specific features and not having one feature
SELECT ?product ?label
WHERE {
 ?product rdfs:label ?label .
 ?product rdf:type %ProductType% .
 ?product bsbm:productFeature %ProductFeature1% .
 ?product bsbm:productPropertyNumeric1 ?p1 .
 FILTER (?p1 > %x%)
 ?product bsbm:productPropertyNumeric3 ?p3 .
 FILTER (?p3 < %y%)
 OPTIONAL {
 ?product bsbm:productFeature %ProductFeature2% .
 ?product rdfs:label ?testVar }
 FILTER (!bound(?testVar)) }

ORDER BY ?label
LIMIT 10

Query 4: Find products matching two different sets of features
SELECT ?product ?label
WHERE {
 { ?product rdfs:label ?label .
 ?product rdf:type %ProductType% .
 ?product bsbm:productFeature %ProductFeature1% .
 ?product bsbm:productFeature %ProductFeature2% .
 ?product bsbm:productPropertyNumeric1 ?p1 .
 FILTER (?p1 > %x%)
} UNION {
 ?product rdfs:label ?label .
 ?product rdf:type %ProductType% .
 ?product bsbm:productFeature %ProductFeature1% .
 ?product bsbm:productFeature %ProductFeature3% .
 ?product bsbm:productPropertyNumeric2 ?p2 .
 FILTER (?p2> %y%) }}
ORDER BY ?label
LIMIT 10 OFFSET 10

Query 5: Find products that are similar to a given product
SELECT DISTINCT ?product ?productLabel
WHERE {
 ?product rdfs:label ?productLabel .
 FILTER (%ProductXYZ% != ?product)
 %ProductXYZ% bsbm:productFeature ?prodFeature .
 ?product bsbm:productFeature ?prodFeature .
 %ProductXYZ% bsbm:productPropertyNumeric1 ?origProperty1 .
 ?product bsbm:productPropertyNumeric1 ?simProperty1 .
 FILTER (?simProperty1 < (?origProperty1 + 120) && ?simProperty1 >
 (?origProperty1 - 120))
 %ProductXYZ% bsbm:productPropertyNumeric2 ?origProperty2 .
 ?product bsbm:productPropertyNumeric2 ?simProperty2 .
 FILTER (?simProperty2 < (?origProperty2 + 170) && ?simProperty2 >
 (?origProperty2 - 170)) }
ORDER BY ?productLabel
LIMIT 5

Query 6: Find products having a label that contains a specific string
SELECT ?product ?label
WHERE {
 ?product rdfs:label ?label .
 ?product rdf:type bsbm:Product .
 FILTER regex(?label, "%word1%")}

Query 7: Retrieve in-depth information about a product including offers and reviews
SELECT ?productLabel ?offer ?price ?vendor ?vendorTitle ?review
 ?revTitle ?reviewer ?revName ?rating1 ?rating2
WHERE {
 %ProductXYZ% rdfs:label ?productLabel .
 OPTIONAL {
 ?offer bsbm:product %ProductXYZ% .
 ?offer bsbm:price ?price .
 ?offer bsbm:vendor ?vendor .
 ?vendor rdfs:label ?vendorTitle .
 ?vendor bsbm:country <http://downlode.org/rdf/iso-3166/countries#DE>.
 ?offer dc:publisher ?vendor .
 ?offer bsbm:validTo ?date .
 FILTER (?date > %currentDate%) }
 OPTIONAL {
 ?review bsbm:reviewFor %ProductXYZ% .
 ?review rev:reviewer ?reviewer .
 ?reviewer foaf:name ?revName .
 ?review dc:title ?revTitle .

 OPTIONAL { ?review bsbm:rating1 ?rating1 . }
 OPTIONAL { ?review bsbm:rating2 ?rating2 . } } }

Query 8: Give me recent English language reviews for a specific product
SELECT ?title ?text ?reviewDate ?reviewer ?reviewerName ?rating1
 ?rating2 ?rating3 ?rating4
WHERE {
 ?review bsbm:reviewFor %ProductXYZ% .
 ?review dc:title ?title .
 ?review rev:text ?text .
 FILTER langMatches(lang(?text), "EN")
 ?review bsbm:reviewDate ?reviewDate .
 ?review rev:reviewer ?reviewer .
 ?reviewer foaf:name ?reviewerName .
 OPTIONAL { ?review bsbm:rating1 ?rating1 . }
 OPTIONAL { ?review bsbm:rating2 ?rating2 . }
 OPTIONAL { ?review bsbm:rating3 ?rating3 . }
 OPTIONAL { ?review bsbm:rating4 ?rating4 . } }
ORDER BY DESC(?reviewDate) LIMIT 20

Query 9: Get information about a reviewer.
DESCRIBE ?x
WHERE {
 %ReviewXYZ% rev:reviewer ?x }

Query 10: Get cheap offers which fulfill the consumer’s delivery requirements.
SELECT DISTINCT ?offer ?price
WHERE {
 ?offer bsbm:product %ProductXYZ% .
 ?offer bsbm:vendor ?vendor .
 ?offer dc:publisher ?vendor .
 ?vendor bsbm:country %CountryXYZ% .
 ?offer bsbm:deliveryDays ?deliveryDays .
 FILTER (?deliveryDays <= 3)
 ?offer bsbm:price ?price .
 ?offer bsbm:validTo ?date .
 FILTER (?date > %currentDate%) }
ORDER BY xsd:double(str(?price))
LIMIT 10

Query 11: Get all information about an offer.
SELECT ?property ?hasValue ?isValueOf
WHERE {
 { %OfferXYZ% ?property ?hasValue }
 UNION
 { ?isValueOf ?property %OfferXYZ% } }

Query 12: Export information about an offer into another schema.
CONSTRUCT {
 %OfferXYZ% bsbm-export:product ?productURI .
 %OfferXYZ% bsbm-export:productlabel ?productlabel .
 %OfferXYZ% bsbm-export:vendor ?vendorname .
 %OfferXYZ% bsbm-export:vendorhomepage ?vendorhomepage .
 %OfferXYZ% bsbm-export:offerURL ?offerURL .
 %OfferXYZ% bsbm-export:price ?price .
 %OfferXYZ% bsbm-export:deliveryDays ?deliveryDays .
 %OfferXYZ% bsbm-export:validuntil ?validTo }
WHERE {
 %OfferXYZ% bsbm:product ?productURI .
 ?productURI rdfs:label ?productlabel .
 %OfferXYZ% bsbm:vendor ?vendorURI .
 ?vendorURI rdfs:label ?vendorname .
 ?vendorURI foaf:homepage ?vendorhomepage .
 %OfferXYZ% bsbm:offerWebpage ?offerURL .
 %OfferXYZ% bsbm:price ?price .
 %OfferXYZ% bsbm:deliveryDays ?deliveryDays .

 %OfferXYZ% bsbm:validTo ?validTo }

Table 4 gives an overview of the characteristics of the BSBM benchmark queries

and highlights specific SPARQL features that are used by the queries. As the queries
are motivated by the use case of an e-commerce portal, various queries use LIMIT
modifiers in order to restrict the number of query results. Query 3 requires negation.
As the SPARQL standard does not directly provide for negation, the query uses a
combination of an OPTIONAL pattern and a FILTER clause that tests whether the
optional variable is unbound to express negation. Query 6 encodes a free text search.
As the SPARQL standard does not support free text search and as the BSBM
benchmark strictly follows the standard without making use of proprietary extension
functions, query 6 uses the SPARQL regex() function. This function is likely to be
much slower than proprietary SPARQL extension functions for free text search that
are usually backed by a full text index. We hope that negation and free text search
will be added to a future version of SPARQL and will then change the queries
accordingly.

Table 4. Characteristics of the BSBM benchmark queries.

Characteristic Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

Simple filters √ √ √ √ √ √ √
Complex filters √ √
More than 9 patterns √ √ √ √
Unbound predicates √
Negation √
OPTIONAL operator √ √ √ √
LIMIT modifier √ √ √ √ √ √
ORDER BY modifier √ √ √ √ √ √
DISTINCT modifier √ √ √
REGEX operator √
UNION operator √ √
DESCRIBE operator √
CONSTRUCT operator √

The benchmark queries do not test all features of the SPARQL query language as

various features were not required by the use case. SPARQL and RDF(S) features that
are not benchmarked include querying RDF datasets and named graphs, blank nodes,
collections and containers, property hierarchies, reified triples, the REDUCED
modifier, and the ASK query form.

SQL Representation

Table 5 contains the SQL representation of four benchmark queries. The complete
SQL representation of the query mix is given in Section 3.4 of the BSBM
specification (Bizer & Schultz, 2008a). It is nevertheless important to note that there

are no exact counterparts for several SPARQL features in standard SQL. SPARQL
features without exact counterparts are: 1. The regex() function in Query 6 which is
emulated using the SQL LIKE operator in order to stay in the bounds of standard
SQL. 2. The DESCRIBE operator used in Query 9 and emulated in SQL with a
SELECT clause that lists attributes that are likely to be returned by a store. Thus,
benchmark results obtained using the SQL query mix should only be used for general
orientation.

Table 5. SQL representation of selected BSBM queries.

Query 1: Find products for a given set of generic features.
SELECT DISTINCT nr, label
FROM product p, producttypeproduct ptp
WHERE p.nr = ptp.product AND ptp.productType=@ProductType@
 AND propertyNum1 > @x@
 AND p.nr IN (SELECT distinct product FROM productfeatureproduct WHERE
 productFeature=@ProductFeature1@)
 AND p.nr IN (SELECT distinct product FROM productfeatureproduct WHERE
 productFeature=@ProductFeature2@)
ORDER BY label
LIMIT 10;
Query 2: Retrieve basic information about a specific product for display purposes.
SELECT pt.label, pt.comment, pt.producer, productFeature, propertyTex1, propertyTex2,
 propertyTex3, propertyNum1, propertyNum2, propertyTex4, propertyTex5,
 propertyNum4
FROM product pt, producer pr, productfeatureproduct pfp
WHERE pt.nr=@ProductXYZ@ AND pt.nr=pfp.product AND pt.producer=pr.nr;
Query 6: Find products having a label that contains a specific string.
SELECT nr, label
FROM product
WHERE label like "%@word1@%";
Query 9: Get information about a reviewer.
SELECT p.nr, p.name, p.mbox_sha1sum, p.country, r2.nr, r2.product, r2.title
FROM review r, person p, review r2
WHERE r.nr=@ReviewXYZ@ AND r.person=p.nr AND r2.person=p.nr;

4. Performance Metrics

BSBM benchmark experiments should report the following performance metrics:

1. Query Mixes per Hour (QMpH): The central performance metric of the
BSBM benchmark are query mixes per hour. The metric measures the
number of complete BSBM query mixes that are answered by a SUT within
one hour. QMpH numbers should always be reported together with the size
of the dataset against which the queries were run, and the numbers of clients
that concurrently worked against the SUT.

2. Queries per Second (QpS): In order to allow a more differentiated analysis,
benchmark results should also be reported on a per query type basis. The
QpS metric measures the number of queries of a specific type that were
answered by the SUT within a second. The metric is calculated by dividing
the number of queries of a specific type within a benchmark run by the
cumulated execution time of these queries. The metric must be measured by
running complete BSBM query mixes against the SUT and may not be
measured by running only queries of the specific type. QpS numbers should
always be reported together with the size of the dataset against which the
queries were run, and the numbers of clients that concurrently worked
against the SUT.

3. Load time (LT): Cumulative time to load an RDF or relational benchmark
dataset from the source file into the SUT. This includes any time spend by
the SUT to build initial index structures and generate statistics about the
dataset for query optimization. LT numbers should always be reported
together with the size of the dataset and the representation type (i.e. Turtle or
SQL dump).

5. Related Work

A benchmark is only a good tool for evaluating a system if the benchmark dataset
and the workload are similar to the ones expected in the target use case (Gray, 1993;
Yuanbo Guo et al, 2007). As Semantic Web technologies are used within a wide
range of application scenarios, a variety of different benchmarks for Semantic Web
technologies have been developed.

A widely used benchmark for comparing the performance, completeness and
soundness of OWL reasoning engines is the Lehigh University Benchmark (LUBM)
(Guo et al., 2005). In addition to the experiment in the original paper, (Rohloff et al.,
2007) presents the results of benchmarking DAML DB, SwiftOWLIM, BigOWLIM
and AllegroGraph using a LUMB(8000) dataset consisting of roughly one billion
triples. The LUBM benchmark has been extended in (Ma et al., 2006) to the
University Ontology Benchmark (UOBM) by adding axioms that make use of all
OWL Lite and OWL DL constructs. As both benchmarks predate the SPARQL query

language, they do not support benchmarking specific SPARQL features such as
OPTIONAL filters or DESCRIBE and UNION operators. Both benchmarks do not
employ benchmarking techniques such as system warm-up, simulating concurrent
clients, and executing mixes of parameterized queries in order to test the caching
strategy of a SUT.

An early SPARQL-specific performance benchmark is the DBpedia Benchmark
(Becker, 2008). The benchmark measures the execution time of 5 queries that are
relevant in the context of DBpedia Mobile (Becker & Bizer, 2008) against parts of the
DBpedia dataset. Compared to the BSBM benchmark, the DBpedia Benchmark has
the drawbacks that its dataset cannot be scaled to different sizes and that the queries
only test a relatively narrow set of SPARQL features.

A recent SPARQL benchmark is SP2Bench (Schmidt, et al., 2008a and 2008b).
SP2Bench uses a scalable dataset that reflects the structure of the DBLP Computer
Science Bibliography. The benchmark queries are designed for the comparison of
different RDF store layouts and RDF data management approaches. The SP2Bench
benchmark queries are not parameterized and are not ordered within a use case
motivated sequence. As the primary interest of the authors is the “basic performance
of the approaches (rather than caching or learning strategies of the systems)”
(Schmidt, et al., 2008a), they decided for cold runs instead of executing queries
against warmed-up systems. Because of these differences, the SP2Bench benchmark is
likely to be more useful to RDF store developers that want to test “the generality of
RDF storage schemes” (Schmidt, et al., 2008a), while the BSBM benchmark aims to
support application developers in choosing systems that are suitable for mixed query
workloads.

A first benchmark for comparing the performance of relational database to RDF
mapping tools with the performance of native RDF stores is presented in (Svihala &
Jelinek, 2007). The benchmark focuses on the production of RDF graphs from
relational databases and thus only tests SPARQL CONSTRUCT queries. In contrast,
the BSBM query mix also contains various SELECT queries.

A benchmarking methodology for measuring the performance of Ontology
Management APIs is presented in (García-Castro & Gómez-Pérez, 2005). Like
BSBM, this methodology also employs parameterized queries and requires systems to
be warmed up before their performance is measured.

Ongoing initiatives in the area of benchmarking Semantic Web technologies are
the Ontology Alignment Evaluation Initiative (Caracciolo, et al, 2008) which
compares ontology matching systems, and the Billion Triple track of the Semantic
Web Challenge4 which evaluates the ability of Semantic Web applications to process
large quantities of RDF data that is represented using different schemata and has
partly been crawled from the public Web. Further information about RDF
benchmarks and current benchmark results are found on the ESW RDF Store
Benchmarking wiki page 5.

4 http://challenge.semanticweb.org/
5 http://esw.w3.org/topic/RdfStoreBenchmarking

5. Benchmark Experiment

As a proof of concept, we ran the Berlin SPARQL Benchmark against four popular
RDF stores (Sesame6, Virtuoso7, Jena TDB8, and Jena SDB9) and two SPARQL-to-
SQL rewriters (D2R Server10 and Virtuoso RDF Views11) for three dataset sizes: One
million triples, 25 million triples, and 100 million triples. After describing the setup
and the methodology of the experiment, this section presents the benchmark results
for a single client as well as for up to 64 clients working concurrently against the
SUTs. In order to set the benchmark results into context, we compare them with the
performance of two RDBMS (MySQL and Virtuoso RDBMS).

The experiment was conducted on a DELL workstation (processor: Intel Core 2
Quad Q9450 2.66GHz; memory: 8GB DDR2 667; hard disks: 160GB (10,000 rpm)
SATA2, 750GB (7,200 rpm) SATA2) running Ubuntu 8.04 64-bit as operating
system (kernel version 2.6.24-23). All databases were placed on the 10,000 rpm hard
disk. Java version 1.6.0_07 was used and all Java stores were run under the Java
HotSpot(TM) 64-Bit Server VM (build 10.0-b23).

Systems under Test and their Configuration

The systems under test store RDF data either in underlying relational databases or
rely on native RDF storage engines. Sesame allows the user to choose between three
storage engines (in-memory, native, DBMS-backend). Jena SDB offers three different
RDF storage layouts for the underlying RDBMS (layout2, layout2/index und
layout2/hash). Virtuoso RDF Views is coupled with the Virtuoso RDBMS, while
D2R Server can work on top of MySQL, PostgreSQL, Oracle and other SQL-92
compatible databases. The systems employ cost-based query planning (Erling &
Mikhailov, 2007; Owens et al., 2009). The dataset statistics that are used for
evaluating the cost of different query execution plans are either generated once after
the dataset is loaded (Jena TDB, Jena SDB, D2R Server) or are created on the fly by
sampling data (Virtuoso TS). The systems dynamically cache parts of the dataset,
indices as well as (intermediate) query results in main memory.

The impact of the storage layout, query plan optimization and caching on the
overall query performance highly depends on the concrete configuration of the system
as well as on the number and types of queries that contributed to filling the caches. In
order to be able to report meaningful benchmark results we therefore optimized the
configuration of the systems in cooperation with the developers of the systems and

6 http://www.openrdf.org/about.jsp
7 http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/
8 http://jena.hpl.hp.com/wiki/TDB
9 http://jena.hpl.hp.com/wiki/SDB
10 http://www4.wiwiss.fu-berlin.de/bizer/d2r-server/
11 http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/VOSSQL2RDF

warmed up the caches of the systems by executing query mixes until the average
runtime per query mix stabilized (see Methodology of the Experiment below).

In the following, we provide the version numbers of the SUTs and give an
overview about their configuration. The exact configuration of each system including
all settings that were changed from defaults and all indices that were set is given in
(Bizer & Schultz, 2008b).

1. Sesame Version 2.2.4 with Tomcat Version 5.5.25.5 as HTTP interface. We

used the native storage layout, set the spoc, posc, opsc indices in the native
storage configuration, and increased Java heap size to 6144MB.

2. Jena TDB Version 0.7.2 and Joseki Version 3.2 (CVS 2009-02-15) as HTTP
interface. The TDB optimizer was configured to use the statistics based
optimization strategy.

3. Jena SDB Version 1.2.0 and Joseki Version 3.2 (CVS 2009-02-15) as HTTP
interface and MySQL Version 5.1.26 as underlying RDBMS. We configured
SDB to use layout2/hash. The MySQL configuration is given below at 7.

4. Virtuoso Triple Store Open-Source Edition v5.0.10, abbreviated later in
this article as Virtuoso TS. We changed the following performance related
parameters: NumberOfBuffers = 520000; MaxCheckpointRemap =
1000000; StopCompilerWhenXOverRunTime = 1.

5. Virtuoso RDF Views with Virtuoso Open-Source Edition v5.0.10 as
underlying RDBMS. Abbreviated later in this article as Virtuoso RV. The
configuration parameters were the same as for Virtuoso TS. We used a
RDBMS-to-RDF mapping provided by the Openlink developers and set 24
indices according to their suggestion. The complete mapping is given in
(Bizer & Schultz, 2008b).

6. D2R Server Version 0.6 with MySQL Version 5.1.26 as underlying
RDBMS. We increased Java heap size to 6144MB and configured MySQL
as described within point 7. The complete D2RQ mapping is given in (Bizer
& Schultz, 2008b).

7. MySQL Version 5.1.26. We set the key_buffer size to 5600M, set indices on
every foreign key column as well as on producttypeproduct (productType,
product), review(product,person), offer(product, deliveryDays, validTo),
and productfeatureproduct(productFeature, product). The analyze table
command was executed for all tables in the database.

8. Virtuoso RDBMS Open-Source Edition v5.0.10, abbreviated later in this
article as Virtuoso SQL. The configuration was the same as for Virtuoso TS
and we set the 24 indices that were proposed by the OpenLink developers.

Methodology of the Experiment

Before we started to measure the performance of the systems, we ran a
qualification test against all systems in order to check whether they return correct
results for the BSBM queries. Within this test, the one million triple BSBM dataset
was loaded into the stores and 15 query mixes (altogether 375 queries, fixed
randomizer seed) were run against the stores. The query results returned by the stores
were compared with the expected results using the BSBM qualification tool. For the

DESCRIBE query (Query 9), the qualification tool only checked whether the result
contained any RDF triples as the results of DESCRIBE queries may vary from store
to store. All SUTs passed the BSBM qualification test.

We then applied the following test procedure to each store for each dataset size:

1. Load the benchmark dataset. The load performance of the systems was
measured by loading the Turtle representation of the BSBM datasets into the
triple stores and by loading the relational representation in the form of SQL
dumps into MySQL and the Virtuoso RDBMS. The loaded datasets were
forward chained and contained all rdf:type statements for product types.
Thus the systems did not have to do any inferencing.

2. Shutdown store, clear caches, restart store. After the dataset is loaded and
all indices are build, the store and all associated software components were
shut down. The operating system caches were freed and the store was
restarted.

3. Execute ramp-up until steady-state is reached. In order to benchmark the
systems under normal working conditions, we warmed them up by executing
query mixes until the average runtime per query mix stabilized. We
determined this steady-state by using the results of the last 50 query mixes as
evaluation window. For this evaluation window, the average execution time
of the first 25 query mixes aqt1-25 was calculated. Afterwards, we totaled the
positive and negative aberration ta26-50 of the execution times of the last 25
query mixes from aqt1-25. We consider a SUT in steady-state when ta16-30
deviates less than 3% from aqt1-15 and continued to run query mixes until this
condition was met.

4. Execute single-client test run. The query performance of the systems for a
single client was measured by running 500 BSBM query mixes (altogether
12500 queries) against the systems over the SPARQL protocol.

5. Execute multiple-client test runs. Afterwards, we executed measurement
runs with 2 clients, 4 clients, 8 clients, and 64 clients concurrently working
against the SUT. Each run consisted of 500 query mixes.

6. Execute test run with reduced query mix. Previous experiments showed
that the SUTs spent between 25% and 95% of the overall runtime on only
two out of the 25 queries: Query 5 which contains complex filter expressions
for identifying similar products and Query 6 which uses a regex() function to
emulate free text search. In order to allow the SUTs to optimize their caches
for the less resource intensive queries, we excluded Query 5 and 6 from the
query mix and repeat steps 2 to 5 with this reduced query mix.

The different test runs use different randomizer seeds to choose query parameters.

This ensures that the test driver produces distinctly parameterized queries over all
runs and makes it more complicated for the SUTs to apply caching techniques. The
test driver and the SUT were running on the same machine in order to reduce the
influence of network latency.

In order to make it possible for interested parties to reproduce the results of the
experiment, we provide the RDF and the relational representation of the benchmark

datasets as well as the qualification tool and the test driver for download on the
BSBM website.

6. Results of the Experiment

In the following we present and discuss the results of the experiment.

Load Times
Table 6 summarizes the time it took to load the Turtle files and the SQL dumps

into the different stores. Loading the SQL dump was significantly faster than loading
the Turtle representation. Comparing the load performance of the triple stores, it turns
out that Virtuoso is fast for small datasets while Jena TDB is fast for large datasets.
Sesame Native and Jena SDB altogether showed a poor load performance which
culminated in a load time of more than 3 days for loading the 100M dataset into
Sesame.

Table 6. Load times for different stores and dataset sizes (in [day:]hh:min:sec).

 1M 25M 100M
Sesame 00:02:59 12:17:05 3:06:27:35
Jena TDB 00:00:49 00:16:53 01:34:14
Jena SDB 00:02:09 04:04:38 1:14:53:08
Virtuoso TS 00:00:23 00:39:24 07:56:47
Virtuoso RV 00:00:34 00:17:15 01:03:53
D2R Server 00:00:06 00:02:03 00:11:45
MySQL 00:00:06 00:02:03 00:11:45
Virtuoso SQL 00:00:34 00: 17:15 01:03:53

The disk space footprint of the loaded and index datasets varied widely between

the triple stores and the RDBMS. The 100M triple dataset consumed 17 GB disk
space after being loaded into Sesame, Jena SDB and Virtuoso TS. Loading the dataset
into Jena TDB consumed 19 GB disk space. In contrast, the relational representation
of the dataset consumed only 5.6 GB after being loaded into MySQL and 8.4 GB in
the Virtuoso RDBMS.

Ramp-Up
The runtime of the first warm-up query mix that was executed against the newly
started stores proved to be significantly longer than the runtimes of all other query
mixes as the stores were slowed down by connecting to underlying RDBMS or
building index structures in memory. In order to give an overview about the effect of
system warm-up, Table 7 list the speed-up factors between the runtime of the second
warm-up query mix and the average runtime of a query mix in steady-state.

Table 7. Speed-up factors between the runtime of the second query mix and the average
runtime of a query mix in steady-state.

 1M 25M 100M
Sesame 15,61 3,98 0,75
Jena TDB 3,03 0,52 0,00
Jena SDB 0,97 2,68 0,64
Virtuoso TS 0,47 26,14 46,65
Virtuoso RV 0,15 1,98 100,09
D2R Server 0,67 0,03 0,04
MySQL 26,30 17,37 8,49
Virtuoso SQL 1,03 13,58 247,20

Results for Single Clients

This section presents the results of the single client experiments. The complete run
logs of the experiment can be found in (Bizer & Schultz, 2008b).

Overall Performance

Table 8 gives an overview of the overall query performance of the SUTs. The
performance was measured by running 500 query mixes against the stores and is
reported in query mixes per hour (QMpH). The best performance figure for each
dataset size is set bold in the tables. The results of running the SQL representation of
the query mix against MySQL and Virtuoso RDBMS are also included in the tables
for comparison but are not considered for determining the best SPARQL performance
figure.

Comparing the four triple stores with each other, the Virtuoso triple store shows
the best overall performance for the 25M and the 100M datasets. For the 1M dataset,
Sesame outperforms Virtuoso TS. In the category of SPARQL-to-SQL rewriters,
Virtuoso RV clearly outperforms D2R Server.

Table 8. Overall performance: Complete query mix (in QMpH).

 1M 25M 100M
Sesame 18,094 1,343 254
Jena TDB 4,450 353 81
Jena SDB 10,421 968 211
Virtuoso TS 12,360 4,123 954
Virtuoso RV 17,424 12,972 4,407
D2R Server 2,828 140 35
MySQL 235,066 18,578 4,991
Virtuoso SQL 192,013 69,585 9,102

The comparison of the fastest triple store with the fastest SPARQL-to-SQL
rewriter shows that the performance of both architectures is similar for the 1M triple
dataset. For bigger datasets, Virtuoso RV outperforms the triple stores by at least
factor 3.

Setting the performance of triple stores and SPARQL-to-SQL rewriter in relation
to the result from running the SQL query mix directly against the relational databases
reveals an unedifying picture: MySQL outperforms Sesame for the 1M dataset by the
factor 13. For the 100M dataset, the Virtuoso triple store is outperformed by Virtuoso
SQL by the factor 9.5. In relation to Virtuoso SQL, the fastest SPARQL-to-SQL
rewriter (Virtuoso RV) is outperformed by the factor 2.0 (100M dataset).

Examining the times spent on individual queries (see section below), it appears for
the 25M and the 100M datasets, that the stores spent up to 95% of the overall runtime
on only two out of the 25 queries: Query 5 which contains complex filter expressions
for identifying similar products and Query 6 which uses the regex() function to
emulate free text search. The time spend on Query 6 also explains the good
performance of Virtuoso SQL and Virtuoso RV in relation to MySQL. Virtuoso SQL
and Virtuoso RV both recognize that the SPARQL regex() and the SQL LIKE
expression in Query 6 are workarounds for expressing free text search and thus use a
full text index on the field product.label to evaluate the query. MySQL does not use
full text indices to evaluate SQL LIKE expressions and therefore shows a
significantly slower overall performance in relation to Virtuoso SQL for the 25M and
100M datasets.

Queries 5 and 6 distort the significance of the overall figures for assessing the
performance of the stores on basic tasks such as query pattern matching and simple
filtering. We therefore excluded query 5 and 6 from the query mix and rerun the
experiment with this reduced mix. The overall performance figures obtained by this
second run are given in Table 9.

Table 9. Overall performance: Reduced query mix without queries 5 and 6 (in QMpH).

 1M 25M 100M
Sesame 38,727 39,059 3,116
Jena TDB 15,842 1,856 459
Jena SDB 15,692 4,877 584
Virtuoso TS 13,759 10,718 2,166
Virtuoso RV 18,516 17,529 6,293
D2R Server 11,520 3,780 1,261
MySQL 516,271 280,993 84,797
Virtuoso SQL 219,616 195,647 14,400

For the 100M dataset, excluding the two queries leads to a factor 11 speed-up for

Sesame, a factor 4.7 speed-up for Jena TDB, factor 1.7 for Jena SDB, and a factor 1.2
speed-up for Virtuoso TS. For the SPARQL-to-SQL rewriters, excluding the two
queries speeds up D2R Server by the factor 35, while Virtuoso RV, which uses a full
text index to evaluate query 6, only gains 43%.

Comparing the performance of the three triple stores without queries 5 and 6
Sesame proofs to be the fastest store for all dataset sizes. In the category of SPARQL-
to-SQL rewriters, Virtuoso RV again outperforms D2R Server. Comparing the
performance of triple stores and SPARQL-to-SQL rewriters across architectures,
Sesame outperforms Virtuoso RV for smaller datasets, while Virtuoso RV is twice as
fast as Sesame for the 100M dataset. In the RDBMS category, Virtuoso SQL is
outperformed by MySQL as it lost the advantage of using the full text index to
evaluate Query 6.

Performance by Individual Query

In order to give a more detailed picture of the strengths and weaknesses of the
different systems, we present the benchmark results for each individual query in Table
10. The results were measured by running the complete BSBM query mix. For the
query-by-query results obtained by running the reduced query mix please refer to
(Bizer & Schultz, 2008b). The results in the table are given as queries per second
(QpS). The values are calculated based on average runtime of all queries of a specific
type within the 500 query mixes. The best performance figure for each dataset size is
again set bold.

Table 10. Performance by individual query (in QpS).

 Query 1: Find products for a given set of generic features.
 1M 25M 100M
Sesame 662 200 15
Jena TDB 494 165 35
Jena SDB 374 198 12
Virtuoso TS 202 192 132
Virtuoso RV 199 173 122
D2R Server 328 236 79
MySQL 3,021 955 476
Virtuoso SQL 1,195 833 470

 Query 2: Retrieve basic information about a specific product for
 display purposes.

 1M 25M 100M
Sesame 251 168 32
Jena TDB 61 51 38
Jena SDB 50 47 35
Virtuoso TS 47 46 39
Virtuoso RV 78 75 64
D2R Server 41 36 40
MySQL 4,525 3,333 3,268
Virtuoso SQL 1,592 1,456 991

 Query 3: Find products having some specific features and not
 having one feature.

 1M 25M 100M
Sesame 505 140 13
Jena TDB 451 141 28
Jena SDB 283 151 8
Virtuoso TS 176 165 136
Virtuoso RV 182 167 129
D2R Server 226 115 56
MySQL 2,833 919 459
Virtuoso SQL 1,079 838 456

 Query 4: Find products matching two different sets of features.

 1M 25M 100M
Sesame 452 128 10
Jena TDB 429 116 25
Jena SDB 240 132 7
Virtuoso TS 92 86 54
Virtuoso RV 106 96 84
D2R Server 224 167 72
MySQL 2,653 919 428
Virtuoso SQL 1,098 759 443

 Query 5: Find products that are similar to a given product.

 1M 25M 100M
Sesame 30 1.69 0.52
Jena TDB 1.80 0.13 0.04
Jena SDB 18 1.05 0.46
Virtuoso TS 76 14 5.86
Virtuoso RV 118 30 14
D2R Server 1.08 0.04 0.01
MySQL 396 25 8
Virtuoso SQL 410 43 12

 Query 6: Find products having a label that contains specific words.

 1M 25M 100M
Sesame 14 0.53 0.13
Jena TDB 59 2.40 0.09
Jena SDB 16 0.55 0.12
Virtuoso TS 55 2.12 0.50
Virtuoso RV 275 25 6.03
D2R Server 26 1 0.23

MySQL 163 7 1
Virtuoso SQL 1,605 97 21

 Query 7: Retrieve in-depth information about a product including
 offers and reviews.

 1M 25M 100M
Sesame 87 57 2
Jena TDB 189 28 6
Jena SDB 112 27 2
Virtuoso TS 72 36 5
Virtuoso RV 81 76 15
D2R Server 123 97 12
MySQL 1,912 1,370 407
Virtuoso SQL 831 733 26

 Query 8: Give me recent English language reviews for a specific
 product.

 1M 25M 100M
Sesame 297 90 4
Jena TDB 159 27 8
Jena SDB 134 30 3
Virtuoso TS 116 113 12
Virtuoso RV 132 129 22
D2R Server 72 62 12
MySQL 3,497 601 63
Virtuoso SQL 1,715 1,603 31

 Query 9: Get information about a reviewer.

 1M 25M 100M
Sesame 924 128 19
Jena TDB 57 3 1
Jena SDB 129 9 2
Virtuoso TS 541 533 53
Virtuoso RV 506 482 164
D2R Server 81 73 33
MySQL 4,255 2,849 1,370
Virtuoso SQL 2,639 2,639 145

 Query 10: Get cheap offers which fulfill the consumer’s delivery
 requirements.

 1M 25M 100M
Sesame 429 93 2
Jena TDB 429 62 19
Jena SDB 289 40 2
Virtuoso TS 95 75 8
Virtuoso RV 224 220 67
D2R Server 218 200 77
MySQL 4,444 3,356 1,883
Virtuoso SQL 2,004 1,587 267

 Query 11: Get all information about an offer.

 1M 25M 100M
Sesame 652 98 13
Jena TDB 376 45 24
Jena SDB 351 97 23
Virtuoso TS 361 342 44
Virtuoso RV 102 100 41
D2R Server 33 2 0.4
MySQL 9,174 4,367 456
Virtuoso SQL 2,494 3,195 1,248

 Query 12: Export information about an offer into another schema.

 1M 25M 100M
Sesame 797 350 18
Jena TDB 53 3 1
Jena SDB 119 9 2
Virtuoso TS 133 129 39
Virtuoso RV 151 148 91
D2R Server 203 162 170
MySQL 7,246 2,571 539
Virtuoso SQL 2,801 2,985 1,524

The picture drawn by the overall runtimes is partly changed when the runtimes of

specific queries are analyzed. In the following, we will interpret the results on a
query-by-query basis.

Query 1 is very simple and specific and all stores show a good performance on this
query. Query 2 consists of 15 triple patterns out of which 3 are optional. For the 1M
and 25M datasets, Sesame clearly outperforms all other stores on this query. For the
100M dataset, both SPARQL-to-SQL rewriters show a better performance than the
RDF stores. As the query can be evaluated against the relational representation using

two simple join, the RDBMS outperform the RDF stores by factors between 15 and
100. Queries 3 and 4 are unproblematic for all stores, with again, Sesame being the
fastest store for the 1M dataset and Virtuoso RV and TS performing well for the
larger data sets. Jena SDB shows a steep performance slump between the 25M and the
100M dataset for both queries.

Query 5 contains the most demanding FILTER expressions of all queries in the
mix. Evaluating this query is time consuming for all RDF stores as well as for the
RDBMS. Not taking into account the RDBMS, Virtuoso RV shows the best
performance on this query for all dataset sizes and largely outperforms D2R Server
which is very slow on this query. The time spent on Query 5 dominates the overall
runtime of the complete query mix for several stores: D2R Server spends 90% of the
overall runtime on this query, Jena TDB 70%, Jena SDB and Sesame around 20%, the
Virtuoso triple store only 6%. The performance on Query 6 is mostly determined by
whether a store relies on a full text index or not to answer the query. Stores without
text index, like Jena TDB, need up to 11 seconds to evaluate the query against the
100M dataset. Virtuoso RV and Virtuoso SQL recognize that the SPARQL regex()
and the SQL LIKE expressions in Query 6 are workarounds for expressing free text
search and thus clearly outperform the other stores by using a full text index to answer
the query. Query 7 and 8 again contain a large number of triple patters out of which
several are optional. They thus proof to be expansive for all stores. For both queries,
triple stores (Sesame and Jena TDB) perform best on the 1M dataset, while the
SPARQL-to-SQL rewriters show the best performance for the large datasets. The
Query 9 uses the DESCRIBE operator. Jena SDB and TDB both have problems with
this operator while the other stores show a good performance.

Query 10 can be evaluated against the relation representation using a single join
between the vendor and the offer tables. The SPARQL-to-SQL rewriters thus clearly
outperform the triple stores for larger datasets. For the 1M dataset Sesame and Jena
TDB show the best performance. Query 11 contains two triple patterns with unbound
predicates. As unbound predicates require SPARQL-to-SQL rewriters to examine
various columns in the relational database, the rewriters are outperformed on this
query by the triple stores. Query 12 uses the CONSTRUCT operator. Sesame
performs best on this query for the 1M and 25M dataset, while D2R Server shows the
best performance for the 100M dataset. The CONSTRUCT operator is problematic
for Jena TDB and SDB which are both very slow for the 25M and 100M datasets.

Results for Multiple Clients

In real-world settings there are often multiple clients working against a SPARQL
endpoint. We thus had the test driver simulate up to 64 clients concurrently working
against the SUTs. Tables 11 and 12 summarize the results of the multi-client runs
against the 1M and 25M datasets. The performance of the systems is measured by the
number of query mixes that were answered by the SUT for all clients within one hour.
Note that the query mixes per hour values are extrapolated from the time it took the
clients to execute 500 query mixes each.

Table 11. Performance for multiple clients, 1M dataset (in QMpH).

Dataset size 1M Number of clients

 1 2 4 8 64

Sesame 18,094 19,057 16,460 18,295 16,517
Jena TDB 4,450 6,752 9,429 8,453 8,664
Jena SDB 10,421 17,280 23,433 24,959 23,478
Virtuoso TS 12,360 21,356 32,513 29,448 29,483
Virtuoso RV 17,424 28,985 34,836 32,668 33,339
D2R Server 2,828 3,861 3,140 2,960 2,938
MySQL 235,066 318,071 472,502 442,282 454,563
Virtuoso SQL 192,013 199,205 274,796 357,316 306,172

 Table 12. Performance for multiple clients, 25M dataset (in QMpH).

Dataset size 25M Number of clients

 1 2 4 8 64

Sesame 1,343 1,485 1,204 1,300 1,271
Jena TDB 353 513 694 536 555
Jena SDB 968 1,346 1,021 883 927
Virtuoso TS 4,123 7,610 9,491 5,901 5,400
Virtuoso RV 12,972 22,552 30,387 28,261 28,748
D2R Server 140 187 160 146 143
MySQL 18,578 31,093 39,647 40,599 40,470
Virtuoso SQL 69,585 85,146 135,097 173,665 148,813

The experiment showed for all systems except Sesame and D2R Server that the

number of query mixes per hour doubles on average between the single client and the
4 client runs. Then the performance more or less stabilizes in a 20% variation corridor
for the 8 and 64 client runs. For Sesame and D2R Server, the number of query mixes
per hour stays mostly constant, which indicates that the systems do not take advantage
of the multi-core processor provided by the benchmark machine.

 The absolute numbers show that Virtuoso TS outperforms Jena TDB, Jena SDB
and Sesame in all multi-client tests. Virtuoso RV also clearly outperforms D2R
Server. Virtuoso RV’s ability to handle multiple clients combined with the generally
good performance of SPARQL-to-SQL rewriting architecture for larger datasets leads
to a far-off overall win of Virtuoso RV against all other stores for the 25M dataset:
For the 8 client case Virtuoso RV is factor 3.7 faster than Virtuoso TS, factor 20
faster than Sesame, and factor 31 faster than Jena SDB.

7. Conclusion

This article introduced the Berlin SPARQL Benchmark for comparing the query
performance of native RDF stores with the performance of SPARQL-to-SQL
rewriters across architectures. The benchmark dataset, the benchmark queries as well
as the query sequence are grounded within an e-commerce use case. The benchmark
focuses on measuring query performance under enterprise conditions. The BSBM
benchmark thus employs benchmarking techniques from the database and transaction
processing field (Gray, 1993; TPC, 2008), such as executing query mixes, query
parameterization, simulation of multiple clients, and system ramp-up.

The BSBM benchmark complements the field of benchmarks for Semantic Web
technologies with a benchmark for measuring SPARQL query performance for mixed
query workloads as well as for comparing the performance of RDF stores and
SPARQL-to-SQL rewriters. The benchmark fills a gap between SP2Bench which is
designed for the comparison of different RDF store layouts, LUBM which focuses on
reasoning, and the Ontology Alignment Evaluation Initiative which focuses on
schema matching and mapping.

As a proof of concept, the article presented the results of a benchmark experiment
in which the BSBM benchmark is used to compare the performance of four RDF
stores with two SPARQL-to-SQL rewriters and to set the results into relation to the
performance of RDBMS. The experiment unveiled several interesting findings:

Within all categories, none of the benchmarked systems was superior within the
single client use case for all queries and all dataset sizes. Comparing the RDF stores,
Sesame showed a good performance for small datasets while Virtuoso TS was faster
for larger datasets. For larger datasets, Jena TDB and SDB could not compete in
terms of overall performance. In the category of SPARQL-to-SQL rewriters Virtuoso
RV clearly outperformed D2R Server.

Comparing the fastest RDF store with the fastest SPARQL-to-SQL rewriter shows
that the rewriting approach outperforms native RDF storage with increasing dataset
size. This is shown by the overall runtimes as well as by the results for 9 out of 12
individual queries (100M triple, single client).

Setting the results of the RDF stores and the SPARQL-to-SQL rewriters in relation
to the performance of classical RDBMS unveiled an unedifying picture. Comparing
the overall performance (100M triple, single client, all queries) of the fastest rewriter
with the fastest relational database shows an overhead for query rewriting of 106%.
This is an indicator that there is still room for improving the rewriting algorithms.
Comparing the overall performance (100M triple, single client, all queries) of the
fastest RDF store with the fastest RDBMS shows that the RDF store is outperformed
by the factor 8.5. There are two potential explanations for this finding: First, as
SPARQL is still a very new query language it is likely that the RDF stores have not
yet implemented similarly sophisticated optimization techniques as SQL query
engines which are under development for decades. Thus, there should be potential for
RDF stores to catch up in the future. The second reason is more fundamental and lies
in the combination of the RDF data model and the structure of benchmark dataset.
The RDF data model has been designed for the open Web use case and thus provides
for representing semi-structured data that mixes different schemata. As the BSBM
benchmark dataset is relatively homogeneous, the flexibility of the RDF data model

turns out to be a disadvantage compared to the relational model which is designed for
clearly structured data.

The complete BSBM benchmark specification, current benchmark results, the
benchmark datasets, detailed run logs as well as the source code of the data generator
and test driver (GPL license) are available from the Berlin SPARQL Benchmark
website at http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/

Acknowledgments

 We would like to thank Lilly and Company and especially Susie Stephens for making
this work possible with a research grant. We also would like to thank Orri Erling
(OpenLink Software), Arjohn Kampman (Aduna), Andy Seaborne (Hewlett Packard),
Michael Schmidt (Freiburg University), Richard Cyganiak (DERI Galway), Patrick
van Kleef (OpenLink Software), and Ivan Mikhailov (OpenLink Software) for their
feedback on the benchmark design and their help with configuring the stores for the
experiment.

References

Becker, C. (2008): RDF Store Benchmarks with DBpedia comparing Virtuoso, SDB
and Sesame. Retrieved March 2, 2009, http://www4.wiwiss.fu-berlin.de/benchmarks-
200801/

Becker, C., Bizer, C. (2008): DBpedia Mobile: A Location-Enabled Linked Data
Browser. In: Proceedings of the 1st Workshop about Linked Data on the Web
(LDOW2008).

Bizer, C., Schultz, A. (2008a): Berlin SPARQL Benchmark (BSBM) Specification -
V2.0. Retrieved March 2, 2009, http://www4.wiwiss.fu-
berlin.de/bizer/BerlinSPARQLBenchmark/spec/

Bizer, C., Schultz, A. (2008b): Berlin SPARQL Benchmark Results. Retrieved March
2, 2009, http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/results/

Caracciolo, C., et al (2008): Results of the Ontology Alignment Evaluation Initiative
2008. In: Proceedings of the 3rd International Workshop on Ontology Matching (OM-
2008), CEUR-WS Vol-431.

Erling, O., Mikhailov, I.: RDF Support in the Virtuoso DBMS. In: Proceedings of the
1st Conference on Social Semantic Web (CSSW), pp. 59-68.

García-Castro, R., Gómez-Pérez, A.: Guidelines for Benchmarking the Performance
of Ontology Management APIs. In: The Semantic Web – ISWC 2005, LNCS vol.
3729/2005, pp 277-292

Gray, J. (1993): The Benchmark Handbook for Database and Transaction Systems,
(2nd Edition), Morgan Kaufmann, ISBN 1-55860-292-5.

Guo, Y., Pan, Z., Heflin J. (2005): LUBM: A Benchmark for OWL Knowledge Base
Systems. Journal of Web Semantics, issue 3(2), pp 158-182.

Kendall, G. C., Feigenbaum, L., Torres, E. (2008): SPARQL Protocol for RDF. W3C
Recommendation. Retrieved March 2, 2009, http://www.w3.org/TR/rdf-sparql-
protocol/

Ma, L., et al. (2006): Towards a Complete OWL Ontology Benchmark (UOBM). In:
The Semantic Web: Research and Applications, LNCS vol. 4011/2006, pp 125-139.

Owens, A., et al. (2009): Clustered TDB: A Clustered Triple Store for Jena. Retrieved
March 2, 2009, http://eprints.ecs.soton.ac.uk/16974/

Prud'hommeaux, E., Seaborne, A. (2008): SPARQL Query Language for RDF. W3C
Recommendation. Retrieved March 2, 2009, http://www.w3.org/TR/rdf-sparql-query/

Rohloff, K., et al. (2007): An Evaluation of Triple-Store Technologies for Large Data
Stores. In: On the Move to Meaningful Internet Systems 2007: OTM 2007
Workshops, LNCS vol. 4806/2007, pp 1105-1114.

Sahoo, S., et al. (2009): A Survey of Current Approaches for Mapping of Relational
Databases to RDF. Retrieved February 25, 2009,
http://www.w3.org/2005/Incubator/rdb2rdf/RDB2RDF_SurveyReport.pdf

Schmidt, M., Hornung, T., Küchlin, N., Lausen, G., Pinkel, C. (2008a): An
Experimental Comparison of RDF Data Management Approaches in a SPARQL
Benchmark Scenario. In: Proceedings of the International Semantic Web Conference
(ISWC 2008).

Schmidt, M., Hornung, T., Lausen, G., Pinkel, C. (2008b): SP2Bench: A SPARQL
Performance Benchmark. Technical Report, arXiv:0806.4627V1 cs.DB.

Svihala, M., Jelinek, I. (2007): Benchmarking RDF Production Tools. In: Proceedings
of the 18th International Conference on Database and Expert Systems Applications
(DEXA 2007).

Transaction Processing Performance Council (2008): TPC Benchmark H, Standard
Specification Revision 2.7.0. Retrieved March 2, 2009,
http://www.tpc.org/tpch/spec/tpch2.7.0.pdf

Yuanbo, G., et al. (2007): A Requirements Driven Framework for Benchmarking
Semantic Web Knowledge Base Systems. IEEE Transactions on Knowledge and Data
Engineering, issue 19(2), pp 297-309.

