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Abstract. The SPARQL Query Language for RDF and the SPARQL Protocol 
for RDF are implemented by a growing number of storage systems and are used 
within enterprise and open Web settings. As SPARQL is taken up by the 
community, there is a growing need for benchmarks to compare the 
performance of storage systems that expose SPARQL endpoints via the 
SPARQL protocol. Such systems include native RDF stores as well as systems 
that rewrite SPARQL queries to SQL queries against non-RDF relational 
databases. This article introduces the Berlin SPARQL Benchmark (BSBM) for 
comparing the performance of native RDF stores with the performance of 
SPARQL-to-SQL rewriters across architectures. The benchmark is built around 
an e-commerce use case in which a set of products is offered by different 
vendors and consumers have posted reviews about products. The benchmark 
query mix emulates the search and navigation pattern of a consumer looking for 
a product. The article discusses the design of the BSBM benchmark and 
presents the results of a benchmark experiment comparing the performance of 
four popular RDF stores (Sesame, Virtuoso, Jena TDB, and Jena SDB) with the 
performance of two SPARQL-to-SQL rewriters (D2R Server and Virtuoso RDF 
Views) as well as the performance of two relational database management 
systems (MySQL and Virtuoso RDBMS).  

Keywords: Benchmark, scalability, Semantic Web, SPARQL, RDF, relational 
database to RDF mapping, SPARQL to SQL rewriting 

1.   Introduction 

The SPARQL Query Language for RDF (Prud'hommeaux & Seaborne 2008) and 
the SPARQL Protocol for RDF (Kendall et al, 2008) are increasingly used as a 
standardized query API for providing access to datasets on the public Web1 and 
within enterprise settings2. Today, most enterprise data is stored in relational 
databases. In order to prevent synchronization problems, it is preferable in many 
situations to have direct SPARQL access to this data without having to replicate it 
into RDF. Such direct access can be provided by SPARQL-to-SQL rewriters that 

                                                           
1 http://esw.w3.org/topic/SparqlEndpoints 
2 http://www.w3.org/2001/sw/sweo/public/UseCases/  



translate incoming SPARQL queries on the fly into SQL queries against an 
application-specific relational schema based on a mapping. The resulting SQL queries 
are then executed against the legacy database and the query results are transformed 
into a SPARQL result set. An overview of existing work in this space has been 
gathered by the W3C RDB2RDF Incubator Group3 and is presented in (Sahoo et al., 
2009).  

This article introduces the Berlin SPARQL Benchmark (BSBM) for comparing the 
SPARQL query performance of native RDF stores with the performance of SPARQL-
to-SQL rewriters. The benchmark aims to assist application developers in choosing 
the right architecture and the right storage system for their requirements. The 
benchmark might also be useful for the developers of RDF stores and SPARQL-to-
SQL rewriters as it reveals the strengths and weaknesses of current systems and might 
help to improve them in the future. 

  The Berlin SPARQL Benchmark was designed in accordance with three goals:  
1. The benchmark should allow the comparison of storage systems that expose 

SPARQL endpoints across architectures.  
2. The benchmark should simulate an enterprise setting where multiple clients 

concurrently execute realistic workloads of use case motivated queries against 
the systems under test.  

3. As the SPARQL query language and the SPARQL protocol are often used 
within scenarios that do not rely on heavyweight reasoning but focus on the 
integration and visualization of large amounts of data from multiple data 
sources, the BSBM benchmark should not be designed to require complex 
reasoning but to measure SPARQL query performance against large amounts 
of RDF data.   

The BSBM benchmark is built around an e-commerce use case, where a set of 
products is offered by different vendors and consumers have posted reviews about 
products. The benchmark query mix emulates the search and navigation pattern of a 
consumer looking for a product.  

The implementation of the benchmark consists of a data generator and a test driver. 
The data generator supports the creation of arbitrarily large datasets using the number 
of products as scale factor. In order to be able to compare the performance of RDF 
stores with the performance of SPARQL-to-SQL rewriters, the data generator can 
output two representations of the benchmark data: An RDF representation and a 
purely relational representation.  

The test driver executes sequences of SPARQL queries over the SPARQL protocol 
against the system under test (SUT). In order to emulate a realistic workload, the test 
driver can simulate multiple clients that concurrently execute query mixes against the 
SUT. The queries are parameterized with random values from the benchmark dataset, 
in order to make it more difficult for the SUT to apply caching techniques. The test 
driver executes a series of warm-up query mixes before the actual performance is 
measured in order to benchmark systems under normal working conditions.    

The BSBM benchmark also defines a SQL representation of the query mix, which 
the test driver can execute via JDBC against relational databases. This allows the 
comparison of SPARQL results with the performance of traditional RDBMS. 

                                                           
3 http://www.w3.org/2005/Incubator/rdb2rdf/ 



This article makes the following contributions to the field of benchmarking 
Semantic Web technologies: 

1. It complements the field with a use case driven benchmark for comparing the 
SPARQL query performance of native RDF stores with the performance of 
SPARQL-to-SQL rewriters. 

2. It provides guidance to application developers by applying the benchmark to 
measure and compare the performance of four popular RDF stores, two 
SPARQL-to-SQL rewriters and two relational database management systems. 

The remainder of the paper is structured as follows: Section 2 gives an overview of 
the benchmark dataset. Section 3 motivates the benchmark query mix and defines the 
benchmark queries. Section 4 compares the BSBM benchmark with other benchmarks 
for Semantic Web technologies. As a proof of concept, Sections 5 and 6 present the 
results of an experiment that applies the BSBM benchmark to compare the 
performance of RDF stores and SPARQL-to-SQL rewriters, and sets the results into 
relation to the performance of RDBMS.  

2. The Benchmark Dataset 

The BSBM benchmark is settled in an e-commerce use case in which a set of products 
is offered by different vendors and consumers have posted reviews about these 
products on various review sites. The benchmark defines an abstract data model for 
this use case together with data production rules that allow benchmark datasets to be 
scaled to arbitrary sizes using the number of products as scale factor. In order to 
compare RDF stores with SPARQL-to-SQL rewriters, the benchmark defines two 
concrete representations of the abstract model: An RDF representation and a 
relational representation.  

The data model contains the following classes: Product, ProductType, 
ProductFeature, Producer, Vendor, Offer, Review, and Person.  Figure 1 gives an 
overview of the properties of each class, the multiplicity of properties, and the 
multiplicity ranges into which 99% of the associations between classes fall. In the 
following we describe the data production rules that are used to generate datasets for a 
given scale factor n. 

The data generator creates n product instances. Products are described by a 
rdfs:label and a rdfs:comment. Products have between 3 and 5 textual properties. The 
values of these properties consist of 5 to 15 words which are randomly chosen from a 
dictionary. Products have 3 to 5 numeric properties with property values ranging from 
1 to 2000 with a normal distribution. 

Products have a type that is part of a type hierarchy. The depth and width of this 
subsumption hierarchy depends on the chosen scale factor.  The depth of the 
hierarchy is calculated as d = round(log10(n))/2 + 1. The branching factor for the 
root level of the hierarchy is bfr = 2*round(log10(n)). The branching factor for all 
other levels is 8. Every product has one leaf-level product type. In order to run the 
benchmark against stores that do not support RDFS inference, the data generator can 
forward chain the product hierarchy and add all resulting rdf:type statements to the 
dataset. 



  
Figure 1.  Overview of the abstract data model. 

 

    Products have a variable number of product features. Two products that share the 
same product type also share the same set of possible product features. This set is 
determined as follows: Each product type in the type hierarchy is assigned with a 
random number of product features. The range of these random numbers is calculated 
for product types on level i of the hierarchy as lowerBound = 35 * i / (d * (d+1)/2 – 
1) and upperBound = 75 * i / (d * (d+1)/2 – 1), with d being the depth of the 
hierarchy. The set of possible features for a specific product type is the union of the 
features of this type and all its super-types. For a specific product, each feature from 
this set is picked with a probability of 25%. 

Products are produced by producers. The number of products per producer follows 
a normal distribution with a mean of μ = 50 and a standard deviation of σ = 16.6. New 
producers are created until all products are assigned to a producer. 

Products are offered by vendors. Vendors are described by a label, a comment, a 
homepage URL and a country URI. Countries have the following distribution: US 
40%, UK 10%, JP 10%, CN 10%, 5% DE, 5% FR, 5% ES, 5% RU, 5% KR, 5% AT.  

There are 20 times n offers. Offers are valid for a specific period and contain a 
price ($5-$10000) and the number of days it takes to deliver the product (1-21). 
Offers are distributed over products using a normal distribution with the parameters μ 
= n/2 and σ = n/4. The number of offers per vendor follows a normal distribution with 
the parameters μ = 2000 and σ = 667. New vendors are created until all offers are 
assigned to a vendor. 

Reviews consist of a title and a review text between 50 and 300 words. Reviews 
have up to four ratings with a random integer value between 1 and 10. Each rating is 
missing with a probability of 30%. There are 10 times the scale factor n reviews. The 



reviews are distributed over products using a normal distribution with the parameters 
μ = n/2 and σ = n/4. The number of reviews per reviewer is randomly chosen from a 
normal distribution with the parameters μ = 20 and σ = 6.6. New reviewers are 
generated until each review is assigned. Reviewers are described by their name, 
mailbox checksum and the country the reviewer lives in. The reviewer countries 
follow the same distribution as the vendor countries. 

Table 1 summarizes the number of instances of each class in BSMB datasets of 
different sizes. 

Table 1.  Number of instances in BSBM datasets of different sizes.  

Total number of triples 250K 1M 25M 100M 
Number of products 666 2,785 70,812 284,826 
Number of product features 2,860 4,745 23,833 47,884 
Number of product types 55 151 731 2011 
Number of producers 14 60 1422 5,618 
Number of vendors 8 34 722 2,854 
Number of offers 13,320 55,700 1,416,240 5,696,520 
Number of reviewers  339 1432 36,249 146,054 
Number of reviews 6,660 27,850 708,120 2,848,260 
Total number of instances 23,922 92,757 2,258,129 9,034,027 

 
 
The BSBM data generator can output an RDF representation and a relational 

representation of benchmark datasets. As the data production rules are deterministic, 
it is possible to create RDF and relational representations of exactly the same data. 

3. The Query Mix 

There are two principle options for the design of benchmark query mixes (Gray, 
1993): 1. Design the queries to test specific features of the query language or to test 
specific data management approaches. 2. Base the query mix on the specific 
requirements of a real world use case. The second approach leads to sequences of 
more complex queries that test combinations of different language features. With 
SP2Bench (Schmidt, et al., 2008a and 2008b), there exists already a benchmark for 
SPARQL stores that is designed for the comparison of different RDF data 
management approaches. We therefore decided to follow the second approach and 
designed the BSBM query mix as a sequence of use case motivated queries that 
simulate a realistic workload against the SUT.  

The query mix emulates the search and navigation pattern of a consumer looking 
for a product. In a real world setting, such a query sequence could for instance be 
executed by a shopping portal which is used by consumers to find products and sales 
offers. 



First, the consumer searches for products that have a specific type and match a 
generic set of product features. After looking at basic information about some 
matching products, the consumer gets a better idea of what he actually wants and 
searches again with a more specific set of features. After going for a second time 
through the search results, he searches for products matching two alternative sets of 
features and products that are similar to a product that he likes. After narrowing down 
the set of potential candidates, the consumer starts to look at offers and recent reviews 
for the products that fulfill his requirements. In order to check the trustworthiness of 
the reviews, he retrieves background information about the reviewers. He then 
decides which product to buy and starts to search for the best price for this product 
offered by a vendor that is located in his country and is able to deliver within three 
days. After choosing a specific offer, he retrieves all information about the offer and 
then transforms the information into another schema in order to save it locally for 
future reference. Table 2 shows the BSBM query mix resulting from this search and 
navigation path. 

Table 2.  The BSBM query mix. 

1. Query 1: Find products for a given set of generic features.  
2. Query 2: Retrieve basic information about a specific product for display purposes.  
3. Query 2: Retrieve basic information about a specific product for display purposes.  
4. Query 3: Find products having some specific features and not having one feature.  
5. Query 2: Retrieve basic information about a specific product for display purposes.  
6. Query 2: Retrieve basic information about a specific product for display purposes.  
7. Query 4: Find products matching two different sets of features.  
8. Query 2: Retrieve basic information about a specific product for display purposes.  
9. Query 2: Retrieve basic information about a specific product for display purposes.  
10. Query 5: Find products that are similar to a given product.  
11. Query 7: Retrieve in-depth information about a product including offers and reviews.  
12. Query 7: Retrieve in-depth information about a product including offers and reviews.  
13. Query 6: Find products having a label that contains a specific string.  
14. Query 7: Retrieve in-depth information about a product including offers and reviews.  
15. Query 7: Retrieve in-depth information about a product including offers and reviews.  
16. Query 8: Give me recent English language reviews for a specific product.  
17. Query 9: Get information about a reviewer.  
18. Query 9: Get information about a reviewer.  
19. Query 8: Give me recent English language reviews for a specific product.  
20. Query 9: Get information about a reviewer.  
21. Query 9: Get information about a reviewer.  
22. Query 10: Get cheap offers which fulfill the consumer’s delivery requirements.  
23. Query 10: Get cheap offers which fulfill the consumer’s delivery requirements.  
24. Query 11: Get all information about an offer.  
25. Query 12: Export information about an offer into another schema.

 
The BSBM benchmark defines two representations of the query mix: A SPARQL 

representation for benchmarking RDF stores and SPARQL-to-SQL rewriters, and a 
SQL representation for benchmarking RDBMS.  



SPARQL Representation 

Table 3 contains the SPARQL representation of the benchmark queries. The 
benchmark queries contain parameters which are enclosed with % chars in the table. 
During a test run, these parameters are replaced with random values from the 
benchmark dataset. Queries within two consecutive query mixes differ by the chosen 
parameters which makes it harder for SUTs to apply query caching. As the test driver 
uses a deterministic randomizer, the overall query sequence is the same for test runs 
against different SUTs.  

Table 3.  SPARQL representation of the BSBM queries 

Query 1: Find products for a given set of generic features 
SELECT DISTINCT ?product ?label 
WHERE {  
    ?product rdfs:label ?label . 
    ?product rdf:type %ProductType% . 
    ?product bsbm:productFeature %ProductFeature1% .  
    ?product bsbm:productFeature %ProductFeature2% .  
    ?product bsbm:productPropertyNumeric1 ?value1 .  
  FILTER (?value1 > %x%)} 
ORDER BY ?label 
LIMIT 10 

Query 2: Retrieve basic information about a specific product for display purposes 
SELECT ?label ?comment ?producer ?productFeature ?propertyTextual1 
    ?propertyTextual2 ?propertyTextual3 ?propertyNumeric1  
    ?propertyNumeric2 ?propertyTextual4 ?propertyTextual5   
    ?propertyNumeric4  
WHERE { 
    %ProductXYZ% rdfs:label ?label . 
    %ProductXYZ% rdfs:comment ?comment . 
    %ProductXYZ% bsbm:producer ?p . 
    ?p rdfs:label ?producer . 
    %ProductXYZ% dc:publisher ?p .  
    %ProductXYZ% bsbm:productFeature ?f . 
    ?f rdfs:label ?productFeature . 
    %ProductXYZ% bsbm:productPropertyTextual1 ?propertyTextual1 . 
    %ProductXYZ% bsbm:productPropertyTextual2 ?propertyTextual2 . 
    %ProductXYZ% bsbm:productPropertyTextual3 ?propertyTextual3 . 
    %ProductXYZ% bsbm:productPropertyNumeric1 ?propertyNumeric1 . 
    %ProductXYZ% bsbm:productPropertyNumeric2 ?propertyNumeric2 .  
  OPTIONAL { %ProductXYZ% bsbm:productPropertyTextual4 ?propertyTextual4 } 
  OPTIONAL { %ProductXYZ% bsbm:productPropertyTextual5 ?propertyTextual5 } 
  OPTIONAL { %ProductXYZ% bsbm:productPropertyNumeric4 ?propertyNumeric4 }} 

Query 3: Find products having some specific features and not having one feature 
SELECT ?product ?label 
WHERE { 
    ?product rdfs:label ?label . 
    ?product rdf:type %ProductType% . 
    ?product bsbm:productFeature %ProductFeature1% . 
    ?product bsbm:productPropertyNumeric1 ?p1 . 
  FILTER ( ?p1 > %x% )  
    ?product bsbm:productPropertyNumeric3 ?p3 . 
  FILTER (?p3 < %y% ) 
  OPTIONAL {  
      ?product bsbm:productFeature %ProductFeature2% . 
      ?product rdfs:label ?testVar } 
    FILTER (!bound(?testVar)) } 



ORDER BY ?label 
LIMIT 10 

Query 4: Find products matching two different sets of features 
SELECT ?product ?label 
WHERE { 
    { ?product rdfs:label ?label . 
      ?product rdf:type %ProductType% . 
      ?product bsbm:productFeature %ProductFeature1% . 
      ?product bsbm:productFeature %ProductFeature2% . 
      ?product bsbm:productPropertyNumeric1 ?p1 . 
    FILTER ( ?p1 > %x% ) 
} UNION { 
      ?product rdfs:label ?label . 
      ?product rdf:type %ProductType% . 
      ?product bsbm:productFeature %ProductFeature1% . 
      ?product bsbm:productFeature %ProductFeature3% . 
      ?product bsbm:productPropertyNumeric2 ?p2 . 
    FILTER ( ?p2> %y% ) }} 
ORDER BY ?label 
LIMIT 10 OFFSET 10 

Query 5: Find products that are similar to a given product 
SELECT DISTINCT ?product ?productLabel 
WHERE {  
    ?product rdfs:label ?productLabel . 
  FILTER (%ProductXYZ% != ?product) 
    %ProductXYZ% bsbm:productFeature ?prodFeature . 
    ?product bsbm:productFeature ?prodFeature . 
    %ProductXYZ% bsbm:productPropertyNumeric1 ?origProperty1 . 
    ?product bsbm:productPropertyNumeric1 ?simProperty1 . 
  FILTER (?simProperty1 < (?origProperty1 + 120) && ?simProperty1 >  
    (?origProperty1 - 120)) 
    %ProductXYZ% bsbm:productPropertyNumeric2 ?origProperty2 . 
    ?product bsbm:productPropertyNumeric2 ?simProperty2 . 
  FILTER (?simProperty2 < (?origProperty2 + 170) && ?simProperty2 >  
    (?origProperty2 - 170)) } 
ORDER BY ?productLabel 
LIMIT 5 

Query 6: Find products having a label that contains a specific string 
SELECT ?product ?label 
WHERE { 
    ?product rdfs:label ?label . 
    ?product rdf:type bsbm:Product . 
  FILTER regex(?label, "%word1%")} 

Query 7: Retrieve in-depth information about a product including offers and reviews 
SELECT ?productLabel ?offer ?price ?vendor ?vendorTitle ?review  
    ?revTitle ?reviewer ?revName ?rating1 ?rating2 
WHERE {  
    %ProductXYZ% rdfs:label ?productLabel . 
  OPTIONAL {  
      ?offer bsbm:product %ProductXYZ% . 
      ?offer bsbm:price ?price . 
      ?offer bsbm:vendor ?vendor . 
      ?vendor rdfs:label ?vendorTitle . 
      ?vendor bsbm:country <http://downlode.org/rdf/iso-3166/countries#DE>. 
      ?offer dc:publisher ?vendor .  
      ?offer bsbm:validTo ?date . 
    FILTER (?date > %currentDate% ) } 
  OPTIONAL {  
      ?review bsbm:reviewFor %ProductXYZ% . 
      ?review rev:reviewer ?reviewer . 
      ?reviewer foaf:name ?revName . 
      ?review dc:title ?revTitle . 



    OPTIONAL { ?review bsbm:rating1 ?rating1 . } 
    OPTIONAL { ?review bsbm:rating2 ?rating2 . } } } 

Query 8: Give me recent English language reviews for a specific product 
SELECT ?title ?text ?reviewDate ?reviewer ?reviewerName ?rating1  
    ?rating2 ?rating3 ?rating4  
WHERE {  
    ?review bsbm:reviewFor %ProductXYZ% . 
    ?review dc:title ?title . 
    ?review rev:text ?text . 
  FILTER langMatches( lang(?text), "EN" )  
    ?review bsbm:reviewDate ?reviewDate . 
    ?review rev:reviewer ?reviewer . 
    ?reviewer foaf:name ?reviewerName . 
  OPTIONAL { ?review bsbm:rating1 ?rating1 . } 
  OPTIONAL { ?review bsbm:rating2 ?rating2 . } 
  OPTIONAL { ?review bsbm:rating3 ?rating3 . } 
  OPTIONAL { ?review bsbm:rating4 ?rating4 . } } 
ORDER BY DESC(?reviewDate) LIMIT 20 

Query 9: Get information about a reviewer. 
DESCRIBE ?x 
WHERE {  
    %ReviewXYZ% rev:reviewer ?x } 

Query 10: Get cheap offers which fulfill the consumer’s delivery requirements. 
SELECT DISTINCT ?offer ?price 
WHERE {  
    ?offer bsbm:product %ProductXYZ% . 
    ?offer bsbm:vendor ?vendor . 
    ?offer dc:publisher ?vendor . 
    ?vendor bsbm:country %CountryXYZ% . 
    ?offer bsbm:deliveryDays ?deliveryDays . 
  FILTER (?deliveryDays <= 3) 
    ?offer bsbm:price ?price . 
    ?offer bsbm:validTo ?date . 
  FILTER (?date > %currentDate% ) } 
ORDER BY xsd:double(str(?price)) 
LIMIT 10 

Query 11: Get all information about an offer. 
SELECT ?property ?hasValue ?isValueOf 
WHERE {   
    { %OfferXYZ% ?property ?hasValue }   
  UNION   
    { ?isValueOf ?property %OfferXYZ% } } 

Query 12: Export information about an offer into another schema. 
CONSTRUCT {   
    %OfferXYZ% bsbm-export:product ?productURI .              
    %OfferXYZ% bsbm-export:productlabel ?productlabel . 
    %OfferXYZ% bsbm-export:vendor ?vendorname .              
    %OfferXYZ% bsbm-export:vendorhomepage ?vendorhomepage .            
    %OfferXYZ% bsbm-export:offerURL ?offerURL .  
    %OfferXYZ% bsbm-export:price ?price .  
    %OfferXYZ% bsbm-export:deliveryDays ?deliveryDays .               
    %OfferXYZ% bsbm-export:validuntil ?validTo }  
WHERE {  
    %OfferXYZ% bsbm:product ?productURI . 
    ?productURI rdfs:label ?productlabel . 
    %OfferXYZ% bsbm:vendor ?vendorURI . 
    ?vendorURI rdfs:label ?vendorname . 
    ?vendorURI foaf:homepage ?vendorhomepage .  
    %OfferXYZ% bsbm:offerWebpage ?offerURL . 
    %OfferXYZ% bsbm:price ?price .  
    %OfferXYZ% bsbm:deliveryDays ?deliveryDays .  



    %OfferXYZ% bsbm:validTo ?validTo } 

 
Table 4 gives an overview of the characteristics of the BSBM benchmark queries 

and highlights specific SPARQL features that are used by the queries. As the queries 
are motivated by the use case of an e-commerce portal, various queries use LIMIT 
modifiers in order to restrict the number of query results. Query 3 requires negation. 
As the SPARQL standard does not directly provide for negation, the query uses a 
combination of an OPTIONAL pattern and a FILTER clause that tests whether the 
optional variable is unbound to express negation. Query 6 encodes a free text search. 
As the SPARQL standard does not support free text search and as the BSBM 
benchmark strictly follows the standard without making use of proprietary extension 
functions, query 6 uses the SPARQL regex() function. This function is likely to be 
much slower than proprietary SPARQL extension functions for free text search that 
are usually backed by a full text index. We hope that negation and free text search 
will be added to a future version of SPARQL and will then change the queries 
accordingly.  

Table 4.  Characteristics of the BSBM benchmark queries. 

Characteristic Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 

Simple filters √  √ √   √ √ √ √   
Complex filters      √ √       
More than 9 patterns  √  √   √ √     
Unbound predicates           √  
Negation   √          
OPTIONAL operator  √ √    √ √     
LIMIT modifier √  √ √ √   √  √   
ORDER BY modifier √  √ √ √   √  √   
DISTINCT modifier √    √     √   
REGEX operator      √       
UNION operator    √       √  
DESCRIBE operator         √    
CONSTRUCT operator          √ 

 
The benchmark queries do not test all features of the SPARQL query language as 

various features were not required by the use case. SPARQL and RDF(S) features that 
are not benchmarked include querying RDF datasets and named graphs, blank nodes, 
collections and containers, property hierarchies, reified triples, the REDUCED 
modifier, and the ASK query form.  

SQL Representation 

Table 5 contains the SQL representation of four benchmark queries. The complete 
SQL representation of the query mix is given in Section 3.4 of the BSBM 
specification (Bizer & Schultz, 2008a). It is nevertheless important to note that there 



are no exact counterparts for several SPARQL features in standard SQL. SPARQL 
features without exact counterparts are: 1. The regex() function in Query 6 which is 
emulated using the SQL LIKE operator in order to stay in the bounds of standard 
SQL. 2. The DESCRIBE operator used in Query 9 and emulated in SQL with a 
SELECT clause that lists attributes that are likely to be returned by a store. Thus, 
benchmark results obtained using the SQL query mix should only be used for general 
orientation. 

 

Table 5.  SQL representation of selected BSBM queries. 

Query 1: Find products for a given set of generic features. 
SELECT DISTINCT nr, label 
FROM product p, producttypeproduct ptp 
WHERE p.nr = ptp.product AND ptp.productType=@ProductType@ 
    AND propertyNum1 > @x@ 
    AND p.nr IN (SELECT distinct product FROM productfeatureproduct WHERE  
                           productFeature=@ProductFeature1@) 
    AND p.nr IN (SELECT distinct product FROM productfeatureproduct WHERE  
                          productFeature=@ProductFeature2@) 
ORDER BY label 
LIMIT 10; 
Query 2: Retrieve basic information about a specific product for display purposes. 
SELECT pt.label, pt.comment, pt.producer, productFeature, propertyTex1, propertyTex2,  
               propertyTex3, propertyNum1, propertyNum2, propertyTex4, propertyTex5,   
               propertyNum4 
FROM product pt, producer pr, productfeatureproduct pfp 
WHERE pt.nr=@ProductXYZ@ AND pt.nr=pfp.product AND pt.producer=pr.nr; 
Query 6: Find products having a label that contains a specific string. 
SELECT nr, label 
FROM product 
WHERE label like "%@word1@%"; 
Query 9: Get information about a reviewer. 
SELECT p.nr, p.name, p.mbox_sha1sum, p.country, r2.nr, r2.product, r2.title 
FROM review r, person p, review r2 
WHERE r.nr=@ReviewXYZ@ AND r.person=p.nr AND r2.person=p.nr; 

 



4. Performance Metrics 

BSBM benchmark experiments should report the following performance metrics: 
 

1. Query Mixes per Hour (QMpH): The central performance metric of the 
BSBM benchmark are query mixes per hour. The metric measures the 
number of  complete BSBM query mixes that are answered by a SUT within 
one hour. QMpH numbers should always be reported together with the size 
of the dataset against which the queries were run, and the numbers of clients 
that concurrently worked against the SUT. 

2. Queries per Second (QpS): In order to allow a more differentiated analysis, 
benchmark results should also be reported on a per query type basis. The 
QpS metric measures the number of queries of a specific type that were 
answered by the SUT within a second. The metric is calculated by dividing 
the number of queries of a specific type within a benchmark run by the 
cumulated execution time of these queries. The metric must be measured by 
running complete BSBM query mixes against the SUT and may not be 
measured by running only queries of the specific type. QpS numbers should 
always be reported together with the size of the dataset against which the 
queries were run, and the numbers of clients that concurrently worked 
against the SUT. 

3. Load time (LT): Cumulative time to load an RDF or relational benchmark 
dataset from the source file into the SUT. This includes any time spend by 
the SUT to build initial index structures and generate statistics about the 
dataset for query optimization. LT numbers should always be reported 
together with the size of the dataset and the representation type (i.e. Turtle or 
SQL dump). 

5. Related Work 

A benchmark is only a good tool for evaluating a system if the benchmark dataset 
and the workload are similar to the ones expected in the target use case (Gray, 1993; 
Yuanbo Guo et al, 2007). As Semantic Web technologies are used within a wide 
range of application scenarios, a variety of different benchmarks for Semantic Web 
technologies have been developed. 

A widely used benchmark for comparing the performance, completeness and 
soundness of OWL reasoning engines is the Lehigh University Benchmark (LUBM) 
(Guo et al., 2005). In addition to the experiment in the original paper, (Rohloff et al., 
2007) presents the results of benchmarking DAML DB, SwiftOWLIM, BigOWLIM 
and AllegroGraph using a LUMB(8000) dataset consisting of roughly one billion 
triples. The LUBM benchmark has been extended in (Ma et al., 2006) to the 
University Ontology Benchmark (UOBM) by adding axioms that make use of all 
OWL Lite and OWL DL constructs. As both benchmarks predate the SPARQL query 



language, they do not support benchmarking specific SPARQL features such as 
OPTIONAL filters or DESCRIBE and UNION operators. Both benchmarks do not 
employ benchmarking techniques such as system warm-up, simulating concurrent 
clients, and executing mixes of parameterized queries in order to test the caching 
strategy of a SUT. 

An early SPARQL-specific performance benchmark is the DBpedia Benchmark 
(Becker, 2008). The benchmark measures the execution time of 5 queries that are 
relevant in the context of DBpedia Mobile (Becker & Bizer, 2008) against parts of the 
DBpedia dataset. Compared to the BSBM benchmark, the DBpedia Benchmark has 
the drawbacks that its dataset cannot be scaled to different sizes and that the queries 
only test a relatively narrow set of SPARQL features.   

A recent SPARQL benchmark is SP2Bench (Schmidt, et al., 2008a and 2008b). 
SP2Bench uses a scalable dataset that reflects the structure of the DBLP Computer 
Science Bibliography. The benchmark queries are designed for the comparison of 
different RDF store layouts and RDF data management approaches. The SP2Bench 
benchmark queries are not parameterized and are not ordered within a use case 
motivated sequence. As the primary interest of the authors is the “basic performance 
of the approaches (rather than caching or learning strategies of the systems)” 
(Schmidt, et al., 2008a), they decided for cold runs instead of executing queries 
against warmed-up systems. Because of these differences, the SP2Bench benchmark is 
likely to be more useful to RDF store developers that want to test “the generality of 
RDF storage schemes” (Schmidt, et al., 2008a), while the BSBM benchmark aims to 
support application developers in choosing systems that are suitable for mixed query 
workloads. 

A first benchmark for comparing the performance of relational database to RDF 
mapping tools with the performance of native RDF stores is presented in (Svihala & 
Jelinek, 2007). The benchmark focuses on the production of RDF graphs from 
relational databases and thus only tests SPARQL CONSTRUCT queries. In contrast, 
the BSBM query mix also contains various SELECT queries.   

A benchmarking methodology for measuring the performance of Ontology 
Management APIs is presented in (García-Castro & Gómez-Pérez, 2005). Like 
BSBM, this methodology also employs parameterized queries and requires systems to 
be warmed up before their performance is measured.  

Ongoing initiatives in the area of benchmarking Semantic Web technologies are 
the Ontology Alignment Evaluation Initiative (Caracciolo, et al, 2008) which 
compares ontology matching systems, and the Billion Triple track of the Semantic 
Web Challenge4 which evaluates the ability of Semantic Web applications to process 
large quantities of RDF data that is represented using different schemata and has 
partly been crawled from the public Web. Further information about RDF 
benchmarks and current benchmark results are found on the ESW RDF Store 
Benchmarking wiki page 5.  

                                                           
4 http://challenge.semanticweb.org/ 
5 http://esw.w3.org/topic/RdfStoreBenchmarking 



5.   Benchmark Experiment 

As a proof of concept, we ran the Berlin SPARQL Benchmark against four popular 
RDF stores (Sesame6, Virtuoso7, Jena TDB8, and Jena SDB9) and two SPARQL-to-
SQL rewriters (D2R Server10 and Virtuoso RDF Views11) for three dataset sizes: One 
million triples, 25 million triples, and 100 million triples. After describing the setup 
and the methodology of the experiment, this section presents the benchmark results 
for a single client as well as for up to 64 clients working concurrently against the 
SUTs. In order to set the benchmark results into context, we compare them with the 
performance of two RDBMS (MySQL and Virtuoso RDBMS).  

The experiment was conducted on a DELL workstation (processor: Intel Core 2 
Quad Q9450 2.66GHz; memory: 8GB DDR2 667; hard disks: 160GB (10,000 rpm) 
SATA2, 750GB (7,200 rpm) SATA2) running Ubuntu 8.04 64-bit as operating 
system (kernel version 2.6.24-23).  All databases were placed on the 10,000 rpm hard 
disk. Java version 1.6.0_07 was used and all Java stores were run under the Java 
HotSpot(TM) 64-Bit Server VM (build 10.0-b23).  

Systems under Test and their Configuration 

The systems under test store RDF data either in underlying relational databases or 
rely on native RDF storage engines. Sesame allows the user to choose between three 
storage engines (in-memory, native, DBMS-backend). Jena SDB offers three different 
RDF storage layouts for the underlying RDBMS (layout2, layout2/index und 
layout2/hash). Virtuoso RDF Views is coupled with the Virtuoso RDBMS, while 
D2R Server can work on top of MySQL, PostgreSQL, Oracle and other SQL-92 
compatible databases. The systems employ cost-based query planning (Erling & 
Mikhailov, 2007; Owens et al., 2009). The dataset statistics that are used for 
evaluating the cost of different query execution plans are either generated once after 
the dataset is loaded (Jena TDB, Jena SDB, D2R Server) or are created on the fly by 
sampling data (Virtuoso TS). The systems dynamically cache parts of the dataset, 
indices as well as (intermediate) query results in main memory.  

The impact of the storage layout, query plan optimization and caching on the 
overall query performance highly depends on the concrete configuration of the system 
as well as on the number and types of queries that contributed to filling the caches.  In 
order to be able to report meaningful benchmark results we therefore optimized the 
configuration of the systems in cooperation with the developers of the systems and 

                                                           
6 http://www.openrdf.org/about.jsp 
7 http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/ 
8 http://jena.hpl.hp.com/wiki/TDB 
9 http://jena.hpl.hp.com/wiki/SDB 
10 http://www4.wiwiss.fu-berlin.de/bizer/d2r-server/ 
11 http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/VOSSQL2RDF 



warmed up the caches of the systems by executing query mixes until the average 
runtime per query mix stabilized (see Methodology of the Experiment below).  

In the following, we provide the version numbers of the SUTs and give an 
overview about their configuration. The exact configuration of each system including 
all settings that were changed from defaults and all indices that were set is given in 
(Bizer & Schultz, 2008b). 

 
1. Sesame Version 2.2.4 with Tomcat Version 5.5.25.5 as HTTP interface. We 

used the native storage layout, set the spoc, posc, opsc indices in the native 
storage configuration, and increased Java heap size to 6144MB.  

2. Jena TDB Version 0.7.2 and Joseki Version 3.2 (CVS 2009-02-15) as HTTP 
interface. The TDB optimizer was configured to use the statistics based 
optimization strategy. 

3. Jena SDB Version 1.2.0 and Joseki Version 3.2 (CVS 2009-02-15) as HTTP 
interface and MySQL Version 5.1.26 as underlying RDBMS. We configured 
SDB to use layout2/hash. The MySQL configuration is given below at 7.  

4. Virtuoso Triple Store Open-Source Edition v5.0.10, abbreviated later in 
this article as Virtuoso TS.  We changed the following performance related 
parameters: NumberOfBuffers  = 520000;  MaxCheckpointRemap = 
1000000; StopCompilerWhenXOverRunTime  = 1. 

5. Virtuoso RDF Views with Virtuoso Open-Source Edition v5.0.10 as 
underlying RDBMS. Abbreviated later in this article as Virtuoso RV. The 
configuration parameters were the same as for Virtuoso TS. We used a 
RDBMS-to-RDF mapping provided by the Openlink developers and set 24 
indices according to their suggestion. The complete mapping is given in 
(Bizer & Schultz, 2008b). 

6. D2R Server Version 0.6 with MySQL Version 5.1.26 as underlying 
RDBMS. We increased Java heap size to 6144MB and configured MySQL 
as described within point 7. The complete D2RQ mapping is given in (Bizer 
& Schultz, 2008b). 

7. MySQL Version 5.1.26. We set the key_buffer size to 5600M, set indices on 
every foreign key column as well as on producttypeproduct (productType, 
product), review(product,person), offer(product, deliveryDays, validTo),  
and productfeatureproduct(productFeature, product). The analyze table 
command was executed for all tables in the database. 

8. Virtuoso RDBMS Open-Source Edition v5.0.10, abbreviated later in this 
article as Virtuoso SQL.  The configuration was the same as for Virtuoso TS 
and we set the 24 indices that were proposed by the OpenLink developers. 

 
Methodology of the Experiment 
 

Before we started to measure the performance of the systems, we ran a 
qualification test against all systems in order to check whether they return correct 
results for the BSBM queries. Within this test, the one million triple BSBM dataset 
was loaded into the stores and 15 query mixes (altogether 375 queries, fixed 
randomizer seed) were run against the stores. The query results returned by the stores 
were compared with the expected results using the BSBM qualification tool. For the 



DESCRIBE query (Query 9), the qualification tool only checked whether the result 
contained any RDF triples as the results of DESCRIBE queries may vary from store 
to store. All SUTs passed the BSBM qualification test. 

We then applied the following test procedure to each store for each dataset size:  
 

1. Load the benchmark dataset. The load performance of the systems was 
measured by loading the Turtle representation of the BSBM datasets into the 
triple stores and by loading the relational representation in the form of SQL 
dumps into MySQL and the Virtuoso RDBMS. The loaded datasets were 
forward chained and contained all rdf:type statements for product types. 
Thus the systems did not have to do any inferencing. 

2. Shutdown store, clear caches, restart store. After the dataset is loaded and 
all indices are build, the store and all associated software components were 
shut down. The operating system caches were freed and the store was 
restarted. 

3. Execute ramp-up until steady-state is reached. In order to benchmark the 
systems under normal working conditions, we warmed them up by executing 
query mixes until the average runtime per query mix stabilized. We 
determined this steady-state by using the results of the last 50 query mixes as 
evaluation window. For this evaluation window, the average execution time 
of the first 25 query mixes aqt1-25 was calculated. Afterwards, we totaled the 
positive and negative aberration ta26-50 of the execution times of the last 25 
query mixes from aqt1-25. We consider a SUT in steady-state when ta16-30 
deviates less than 3% from aqt1-15 and continued to run query mixes until this 
condition was met. 

4. Execute single-client test run.  The query performance of the systems for a 
single client was measured by running 500 BSBM query mixes (altogether 
12500 queries) against the systems over the SPARQL protocol.   

5. Execute multiple-client test runs. Afterwards, we executed measurement 
runs with 2 clients, 4 clients, 8 clients, and 64 clients concurrently working 
against the SUT. Each run consisted of 500 query mixes. 

6. Execute test run with reduced query mix. Previous experiments showed 
that the SUTs spent between 25% and 95% of the overall runtime on only 
two out of the 25 queries: Query 5 which contains complex filter expressions 
for identifying similar products and Query 6 which uses a regex() function to 
emulate free text search. In order to allow the SUTs to optimize their caches 
for the less resource intensive queries, we excluded Query 5 and 6 from the 
query mix and repeat steps 2 to 5 with this reduced query mix.  

 
The different test runs use different randomizer seeds to choose query parameters. 

This ensures that the test driver produces distinctly parameterized queries over all 
runs and makes it more complicated for the SUTs to apply caching techniques. The 
test driver and the SUT were running on the same machine in order to reduce the 
influence of network latency. 

In order to make it possible for interested parties to reproduce the results of the 
experiment, we provide the RDF and the relational representation of the benchmark 



datasets as well as the qualification tool and the test driver for download on the 
BSBM website.  

6. Results of the Experiment 

In the following we present and discuss the results of the experiment. 

Load Times 
Table 6 summarizes the time it took to load the Turtle files and the SQL dumps 

into the different stores. Loading the SQL dump was significantly faster than loading 
the Turtle representation. Comparing the load performance of the triple stores, it turns 
out that Virtuoso is fast for small datasets while Jena TDB is fast for large datasets. 
Sesame Native and Jena SDB altogether showed a poor load performance which 
culminated in a load time of more than 3 days for loading the 100M dataset into 
Sesame. 

Table 6.  Load times for different stores and dataset sizes (in [day:]hh:min:sec).  

 1M 25M 100M 
Sesame 00:02:59 12:17:05 3:06:27:35 
Jena TDB 00:00:49 00:16:53 01:34:14 
Jena SDB 00:02:09 04:04:38 1:14:53:08 
Virtuoso TS 00:00:23 00:39:24 07:56:47 
Virtuoso RV 00:00:34 00:17:15 01:03:53 
D2R Server 00:00:06 00:02:03 00:11:45 
MySQL 00:00:06 00:02:03 00:11:45 
Virtuoso SQL 00:00:34 00: 17:15 01:03:53 

 
The disk space footprint of the loaded and index datasets varied widely between 

the triple stores and the RDBMS. The 100M triple dataset consumed 17 GB disk 
space after being loaded into Sesame, Jena SDB and Virtuoso TS. Loading the dataset 
into Jena TDB consumed 19 GB disk space. In contrast, the relational representation 
of the dataset consumed only 5.6 GB after being loaded into MySQL and 8.4 GB in 
the Virtuoso RDBMS.  

Ramp-Up 
The runtime of the first warm-up query mix that was executed against the newly 
started stores proved to be significantly longer than the runtimes of all other query 
mixes as the stores were slowed down by connecting to underlying RDBMS or 
building index structures in memory. In order to give an overview about the effect of 
system warm-up, Table 7 list the speed-up factors between the runtime of the second 
warm-up query mix and the average runtime of a query mix in steady-state.  



Table 7.  Speed-up factors between the runtime of the second query mix and the average 
runtime of a query mix in steady-state. 

 1M 25M 100M 
Sesame 15,61 3,98 0,75 
Jena TDB 3,03 0,52 0,00 
Jena SDB 0,97 2,68 0,64 
Virtuoso TS 0,47 26,14 46,65 
Virtuoso RV 0,15 1,98 100,09 
D2R Server 0,67 0,03 0,04 
MySQL 26,30 17,37 8,49 
Virtuoso SQL 1,03 13,58 247,20 

 

Results for Single Clients 

This section presents the results of the single client experiments. The complete run 
logs of the experiment can be found in (Bizer & Schultz, 2008b). 

Overall Performance 
 

Table 8 gives an overview of the overall query performance of the SUTs. The 
performance was measured by running 500 query mixes against the stores and is 
reported in query mixes per hour (QMpH). The best performance figure for each 
dataset size is set bold in the tables. The results of running the SQL representation of 
the query mix against MySQL and Virtuoso RDBMS are also included in the tables 
for comparison but are not considered for determining the best SPARQL performance 
figure.  

Comparing the four triple stores with each other, the Virtuoso triple store shows 
the best overall performance for the 25M and the 100M datasets. For the 1M dataset, 
Sesame outperforms Virtuoso TS. In the category of SPARQL-to-SQL rewriters, 
Virtuoso RV clearly outperforms D2R Server.  

 

Table 8.  Overall performance: Complete query mix (in QMpH). 

 1M 25M 100M 
Sesame 18,094 1,343 254  
Jena TDB 4,450 353 81 
Jena SDB 10,421 968 211 
Virtuoso TS 12,360 4,123 954 
Virtuoso RV 17,424 12,972 4,407 
D2R Server 2,828 140 35 
MySQL 235,066 18,578 4,991 
Virtuoso SQL 192,013 69,585 9,102 



 
 

The comparison of the fastest triple store with the fastest SPARQL-to-SQL 
rewriter shows that the performance of both architectures is similar for the 1M triple 
dataset. For bigger datasets, Virtuoso RV outperforms the triple stores by at least 
factor 3.  

Setting the performance of triple stores and SPARQL-to-SQL rewriter in relation 
to the result from running the SQL query mix directly against the relational databases 
reveals an unedifying picture: MySQL outperforms Sesame for the 1M dataset by the 
factor 13. For the 100M dataset, the Virtuoso triple store is outperformed by Virtuoso 
SQL by the factor 9.5. In relation to Virtuoso SQL, the fastest SPARQL-to-SQL 
rewriter (Virtuoso RV) is outperformed by the factor 2.0 (100M dataset).  

Examining the times spent on individual queries (see section below), it appears for 
the 25M and the 100M datasets, that the stores spent up to 95% of the overall runtime 
on only two out of the 25 queries: Query 5 which contains complex filter expressions 
for identifying similar products and Query 6 which uses the regex() function to 
emulate free text search. The time spend on Query 6 also explains the good 
performance of Virtuoso SQL and Virtuoso RV in relation to MySQL.  Virtuoso SQL 
and Virtuoso RV both recognize that the SPARQL regex() and the SQL LIKE 
expression in Query 6 are workarounds for expressing free text search and thus use a 
full text index on the field product.label to evaluate the query. MySQL does not use 
full text indices to evaluate SQL LIKE expressions and therefore shows a 
significantly slower overall performance in relation to Virtuoso SQL for the 25M and 
100M datasets.   

Queries 5 and 6 distort the significance of the overall figures for assessing the 
performance of the stores on basic tasks such as query pattern matching and simple 
filtering. We therefore excluded query 5 and 6 from the query mix and rerun the 
experiment with this reduced mix. The overall performance figures obtained by this 
second run are given in Table 9.   

Table 9.  Overall performance: Reduced query mix without queries 5 and 6 (in QMpH). 

 1M 25M 100M 
Sesame 38,727 39,059 3,116 
Jena TDB 15,842 1,856 459 
Jena SDB 15,692 4,877 584 
Virtuoso TS 13,759 10,718 2,166 
Virtuoso RV 18,516 17,529 6,293 
D2R Server 11,520 3,780 1,261 
MySQL 516,271 280,993 84,797 
Virtuoso SQL 219,616 195,647 14,400 

 
For the 100M dataset, excluding the two queries leads to a factor 11 speed-up for 

Sesame, a factor 4.7 speed-up for Jena TDB, factor 1.7 for Jena SDB, and a factor 1.2 
speed-up for Virtuoso TS. For the SPARQL-to-SQL rewriters, excluding the two 
queries speeds up D2R Server by the factor 35, while Virtuoso RV, which uses a full 
text index to evaluate query 6, only gains 43%.  



Comparing the performance of the three triple stores without queries 5 and 6 
Sesame proofs to be the fastest store for all dataset sizes. In the category of SPARQL-
to-SQL rewriters, Virtuoso RV again outperforms D2R Server. Comparing the 
performance of triple stores and SPARQL-to-SQL rewriters across architectures, 
Sesame outperforms Virtuoso RV for smaller datasets, while Virtuoso RV is twice as 
fast as Sesame for the 100M dataset. In the RDBMS category, Virtuoso SQL is 
outperformed by MySQL as it lost the advantage of using the full text index to 
evaluate Query 6.  

Performance by Individual Query 

In order to give a more detailed picture of the strengths and weaknesses of the 
different systems, we present the benchmark results for each individual query in Table 
10. The results were measured by running the complete BSBM query mix. For the 
query-by-query results obtained by running the reduced query mix please refer to 
(Bizer & Schultz, 2008b). The results in the table are given as queries per second 
(QpS). The values are calculated based on average runtime of all queries of a specific 
type within the 500 query mixes. The best performance figure for each dataset size is 
again set bold.  

Table 10.  Performance by individual query (in QpS). 
 

               Query 1: Find products for a given set of generic features. 
 1M 25M 100M 
Sesame 662 200 15 
Jena TDB 494 165 35 
Jena SDB 374 198 12 
Virtuoso TS 202 192 132 
Virtuoso RV 199 173 122 
D2R Server 328 236 79 
MySQL 3,021 955 476 
Virtuoso SQL 1,195 833 470 

 
            Query 2: Retrieve basic information about a specific product for  
            display purposes. 

 1M 25M 100M 
Sesame 251 168 32 
Jena TDB 61 51 38 
Jena SDB 50 47 35 
Virtuoso TS 47 46 39 
Virtuoso RV 78 75 64 
D2R Server 41 36 40 
MySQL 4,525 3,333 3,268 
Virtuoso SQL 1,592 1,456 991 



 
             Query 3: Find products having some specific features and not  
             having one feature. 

 1M 25M 100M 
Sesame 505 140 13 
Jena TDB 451 141 28 
Jena SDB 283 151 8 
Virtuoso TS 176 165 136 
Virtuoso RV 182 167 129 
D2R Server 226 115 56 
MySQL 2,833 919 459 
Virtuoso SQL 1,079 838 456 

 
            Query 4: Find products matching two different sets of features. 

 1M 25M 100M 
Sesame 452 128 10 
Jena TDB 429 116 25 
Jena SDB 240 132 7 
Virtuoso TS 92 86 54 
Virtuoso RV 106 96 84 
D2R Server 224 167 72 
MySQL 2,653 919 428 
Virtuoso SQL 1,098 759 443 

 
            Query 5: Find products that are similar to a given product. 

 1M 25M 100M 
Sesame 30 1.69 0.52 
Jena TDB 1.80 0.13 0.04 
Jena SDB 18 1.05 0.46 
Virtuoso TS 76 14 5.86 
Virtuoso RV 118 30 14 
D2R Server 1.08 0.04 0.01 
MySQL 396 25 8 
Virtuoso SQL 410 43 12 

 
           Query 6: Find products having a label that contains specific words. 

 1M 25M 100M 
Sesame 14 0.53 0.13 
Jena TDB 59 2.40 0.09 
Jena SDB 16 0.55 0.12 
Virtuoso TS 55 2.12 0.50 
Virtuoso RV 275 25 6.03 
D2R Server 26 1 0.23 



MySQL 163 7 1 
Virtuoso SQL 1,605 97 21 

 
            Query 7: Retrieve in-depth information about a product including  
            offers and reviews. 

 1M 25M 100M 
Sesame 87 57 2 
Jena TDB 189 28 6 
Jena SDB 112 27 2 
Virtuoso TS 72 36 5 
Virtuoso RV 81 76 15 
D2R Server 123 97 12 
MySQL 1,912 1,370 407 
Virtuoso SQL 831 733 26 

 
            Query 8: Give me recent English language reviews for a specific  
            product. 

 1M 25M 100M 
Sesame 297 90 4 
Jena TDB 159 27 8 
Jena SDB 134 30 3 
Virtuoso TS 116 113 12 
Virtuoso RV 132 129 22 
D2R Server 72 62 12 
MySQL 3,497 601 63 
Virtuoso SQL 1,715 1,603 31 

 
            Query 9: Get information about a reviewer. 

 1M 25M 100M 
Sesame 924 128 19 
Jena TDB 57 3 1 
Jena SDB 129 9 2 
Virtuoso TS 541 533 53 
Virtuoso RV 506 482 164 
D2R Server 81 73 33 
MySQL 4,255 2,849 1,370 
Virtuoso SQL 2,639 2,639 145 

 



 
           Query 10: Get cheap offers which fulfill the consumer’s delivery 
            requirements. 

 1M 25M 100M 
Sesame 429 93 2 
Jena TDB 429 62 19 
Jena SDB 289 40 2 
Virtuoso TS 95 75 8 
Virtuoso RV 224 220 67 
D2R Server 218 200 77 
MySQL 4,444 3,356 1,883 
Virtuoso SQL 2,004 1,587 267 

 
            Query 11: Get all information about an offer. 

 1M 25M 100M 
Sesame 652 98 13 
Jena TDB 376 45 24 
Jena SDB 351 97 23 
Virtuoso TS 361 342 44 
Virtuoso RV 102 100 41 
D2R Server 33 2 0.4 
MySQL 9,174 4,367 456 
Virtuoso SQL 2,494 3,195 1,248 

 
            Query 12: Export information about an offer into another schema. 

 1M 25M 100M 
Sesame 797 350 18 
Jena TDB 53 3 1 
Jena SDB 119 9 2 
Virtuoso TS 133 129 39 
Virtuoso RV 151 148 91 
D2R Server 203 162 170 
MySQL 7,246 2,571 539 
Virtuoso SQL 2,801 2,985 1,524 

 
 
The picture drawn by the overall runtimes is partly changed when the runtimes of 

specific queries are analyzed. In the following, we will interpret the results on a 
query-by-query basis. 

Query 1 is very simple and specific and all stores show a good performance on this 
query. Query 2 consists of 15 triple patterns out of which 3 are optional. For the 1M 
and 25M datasets, Sesame clearly outperforms all other stores on this query. For the 
100M dataset, both SPARQL-to-SQL rewriters show a better performance than the 
RDF stores. As the query can be evaluated against the relational representation using 



two simple join, the RDBMS outperform the RDF stores by factors between 15 and 
100. Queries 3 and 4 are unproblematic for all stores, with again, Sesame being the 
fastest store for the 1M dataset and Virtuoso RV and TS performing well for the 
larger data sets. Jena SDB shows a steep performance slump between the 25M and the 
100M dataset for both queries.  

Query 5 contains the most demanding FILTER expressions of all queries in the 
mix. Evaluating this query is time consuming for all RDF stores as well as for the 
RDBMS. Not taking into account the RDBMS, Virtuoso RV shows the best 
performance on this query for all dataset sizes and largely outperforms D2R Server 
which is very slow on this query. The time spent on Query 5 dominates the overall 
runtime of the complete query mix for several stores: D2R Server spends 90% of the 
overall runtime on this query, Jena TDB 70%, Jena SDB and Sesame around 20%, the 
Virtuoso triple store only 6%. The performance on Query 6 is mostly determined by 
whether a store relies on a full text index or not to answer the query. Stores without 
text index, like Jena TDB, need up to 11 seconds to evaluate the query against the 
100M dataset. Virtuoso RV and Virtuoso SQL recognize that the SPARQL regex() 
and the SQL LIKE expressions in Query 6 are workarounds for expressing free text 
search and thus clearly outperform the other stores by using a full text index to answer 
the query. Query 7 and 8 again contain a large number of triple patters out of which 
several are optional. They thus proof to be expansive for all stores. For both queries, 
triple stores (Sesame and Jena TDB) perform best on the 1M dataset, while the 
SPARQL-to-SQL rewriters show the best performance for the large datasets. The 
Query 9 uses the DESCRIBE operator. Jena SDB and TDB both have problems with 
this operator while the other stores show a good performance.  

Query 10 can be evaluated against the relation representation using a single join 
between the vendor and the offer tables. The SPARQL-to-SQL rewriters thus clearly 
outperform the triple stores for larger datasets. For the 1M dataset Sesame and Jena 
TDB show the best performance. Query 11 contains two triple patterns with unbound 
predicates. As unbound predicates require SPARQL-to-SQL rewriters to examine 
various columns in the relational database, the rewriters are outperformed on this 
query by the triple stores. Query 12 uses the CONSTRUCT operator. Sesame 
performs best on this query for the 1M and 25M dataset, while D2R Server shows the 
best performance for the 100M dataset. The CONSTRUCT operator is problematic 
for Jena TDB and SDB which are both very slow for the 25M and 100M datasets. 

Results for Multiple Clients 

In real-world settings there are often multiple clients working against a SPARQL 
endpoint. We thus had the test driver simulate up to 64 clients concurrently working 
against the SUTs. Tables 11 and 12 summarize the results of the multi-client runs 
against the 1M and 25M datasets. The performance of the systems is measured by the 
number of query mixes that were answered by the SUT for all clients within one hour. 
Note that the query mixes per hour values are extrapolated from the time it took the 
clients to execute 500 query mixes each. 

 



Table 11. Performance for multiple clients, 1M dataset (in QMpH).  

Dataset size 1M    Number of clients    

  1  2 4 8 64  

Sesame 18,094 19,057 16,460 18,295 16,517 
Jena TDB 4,450 6,752 9,429 8,453 8,664 
Jena SDB 10,421 17,280 23,433 24,959 23,478 
Virtuoso TS 12,360 21,356 32,513 29,448 29,483 
Virtuoso RV 17,424 28,985 34,836 32,668 33,339 
D2R Server 2,828 3,861 3,140 2,960 2,938 
MySQL 235,066 318,071 472,502 442,282 454,563 
Virtuoso SQL 192,013 199,205 274,796 357,316 306,172 

             Table 12. Performance for multiple clients, 25M dataset (in QMpH).  

Dataset size 25M    Number of clients    

  1  2 4 8 64  

Sesame 1,343 1,485 1,204 1,300 1,271 
Jena TDB 353 513 694 536 555 
Jena SDB 968 1,346 1,021 883 927 
Virtuoso TS 4,123 7,610 9,491 5,901 5,400  
Virtuoso RV 12,972 22,552 30,387 28,261 28,748 
D2R Server 140 187 160 146 143 
MySQL 18,578 31,093 39,647 40,599 40,470 
Virtuoso SQL 69,585 85,146 135,097 173,665 148,813 

 
The experiment showed for all systems except Sesame and D2R Server that the 

number of query mixes per hour doubles on average between the single client and the 
4 client runs. Then the performance more or less stabilizes in a 20% variation corridor 
for the 8 and 64 client runs. For Sesame and D2R Server, the number of query mixes 
per hour stays mostly constant, which indicates that the systems do not take advantage 
of the multi-core processor provided by the benchmark machine. 

 The absolute numbers show that Virtuoso TS outperforms Jena TDB, Jena SDB 
and Sesame in all multi-client tests. Virtuoso RV also clearly outperforms D2R 
Server. Virtuoso RV’s ability to handle multiple clients combined with the generally 
good performance of SPARQL-to-SQL rewriting architecture for larger datasets leads 
to a far-off overall win of Virtuoso RV against all other stores for the 25M dataset: 
For the 8 client case Virtuoso RV is factor 3.7 faster than Virtuoso TS, factor 20 
faster than Sesame, and factor 31 faster than Jena SDB.  



7.   Conclusion  

This article introduced the Berlin SPARQL Benchmark for comparing the query 
performance of native RDF stores with the performance of SPARQL-to-SQL 
rewriters across architectures. The benchmark dataset, the benchmark queries as well 
as the query sequence are grounded within an e-commerce use case. The benchmark 
focuses on measuring query performance under enterprise conditions. The BSBM 
benchmark thus employs benchmarking techniques from the database and transaction 
processing field (Gray, 1993; TPC, 2008), such as executing query mixes, query 
parameterization, simulation of multiple clients, and system ramp-up.  

The BSBM benchmark complements the field of benchmarks for Semantic Web 
technologies with a benchmark for measuring SPARQL query performance for mixed 
query workloads as well as for comparing the performance of RDF stores and 
SPARQL-to-SQL rewriters. The benchmark fills a gap between SP2Bench which is 
designed for the comparison of different RDF store layouts, LUBM which focuses on 
reasoning, and the Ontology Alignment Evaluation Initiative which focuses on 
schema matching and mapping.  

As a proof of concept, the article presented the results of a benchmark experiment 
in which the BSBM benchmark is used to compare the performance of four RDF 
stores with two SPARQL-to-SQL rewriters and to set the results into relation to the 
performance of RDBMS. The experiment unveiled several interesting findings: 

Within all categories, none of the benchmarked systems was superior within the 
single client use case for all queries and all dataset sizes. Comparing the RDF stores, 
Sesame showed a good performance for small datasets while Virtuoso TS was faster 
for larger datasets. For larger datasets, Jena TDB and SDB could not compete in 
terms of overall performance. In the category of SPARQL-to-SQL rewriters Virtuoso 
RV clearly outperformed D2R Server.  

Comparing the fastest RDF store with the fastest SPARQL-to-SQL rewriter shows 
that the rewriting approach outperforms native RDF storage with increasing dataset 
size. This is shown by the overall runtimes as well as by the results for 9 out of 12 
individual queries (100M triple, single client).  

Setting the results of the RDF stores and the SPARQL-to-SQL rewriters in relation 
to the performance of classical RDBMS unveiled an unedifying picture. Comparing 
the overall performance (100M triple, single client, all queries) of the fastest rewriter 
with the fastest relational database shows an overhead for query rewriting of 106%. 
This is an indicator that there is still room for improving the rewriting algorithms. 
Comparing the overall performance (100M triple, single client, all queries) of the 
fastest RDF store with the fastest RDBMS shows that the RDF store is outperformed 
by the factor 8.5. There are two potential explanations for this finding: First, as 
SPARQL is still a very new query language it is likely that the RDF stores have not 
yet implemented similarly sophisticated optimization techniques as SQL query 
engines which are under development for decades. Thus, there should be potential for 
RDF stores to catch up in the future. The second reason is more fundamental and lies 
in the combination of the RDF data model and the structure of benchmark dataset. 
The RDF data model has been designed for the open Web use case and thus provides 
for representing semi-structured data that mixes different schemata. As the BSBM 
benchmark dataset is relatively homogeneous, the flexibility of the RDF data model 



turns out to be a disadvantage compared to the relational model which is designed for 
clearly structured data. 

The complete BSBM benchmark specification, current benchmark results, the 
benchmark datasets, detailed run logs as well as the source code of the data generator 
and test driver (GPL license) are available from the Berlin SPARQL Benchmark 
website at http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/  
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