
Data & Knowledge Engineering xxx (2009) xxx–xxx

ARTICLE IN PRESS
Contents lists available at ScienceDirect

Data & Knowledge Engineering

journal homepage: www.elsevier .com/locate /datak
Semantics preserving SPARQL-to-SQL translation

Artem Chebotko a,*, Shiyong Lu b, Farshad Fotouhi b

a Department of Computer Science, University of Texas-Pan American, 1201 West University Drive, Edinburg, TX 78539, USA
b Department of Computer Science, Wayne State University, 431 State Hall, 5143 Cass Avenue, Detroit, MI 48202, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 6 July 2008
Received in revised form 2 April 2009
Accepted 3 April 2009
Available online xxxx

Keywords:
SPARQL-to-SQL translation
SPARQL semantics
SPARQL
SQL
RDF
query
RDF store
RDBMS
0169-023X/$ - see front matter � 2009 Elsevier B.V
doi:10.1016/j.datak.2009.04.001

* Corresponding author. Tel.: +1 956 381 2577; fa
E-mail addresses: artem@cs.panam.edu (A. Chebo

Please cite this article in press as: A. Cheb
doi:10.1016/j.datak.2009.04.001
Most existing RDF stores, which serve as metadata repositories on the Semantic Web, use
an RDBMS as a backend to manage RDF data. This motivates us to study the problem of
translating SPARQL queries into equivalent SQL queries, which further can be optimized
and evaluated by the relational query engine and their results can be returned as SPARQL
query solutions. The main contributions of our research are: (i) We formalize a relational
algebra based semantics of SPARQL, which bridges the gap between SPARQL and SQL query
languages, and prove that our semantics is equivalent to the mapping-based semantics of
SPARQL; (ii) Based on this semantics, we propose the first provably semantics preserving
SPARQL-to-SQL translation for SPARQL triple patterns, basic graph patterns, optional graph
patterns, alternative graph patterns, and value constraints; (iii) Our translation algorithm is
generic and can be directly applied to existing RDBMS-based RDF stores; and (iv) We out-
line a number of simplifications for the SPARQL-to-SQL translation to generate simpler and
more efficient SQL queries and extend our defined semantics and translation to support the
bag semantics of a SPARQL query solution. The experimental study showed that our pro-
posed generic translation can serve as a good alternative to existing schema dependent
translations in terms of efficient query evaluation and/or ensured query result correctness.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

The Semantic Web [7,47] has recently gained tremendous momentum due to its great potential for providing a common
framework that allows data to be shared and reused across application, enterprise, and community boundaries. Semantic
annotations for various heterogeneous resources on the Web are represented in Resource Description Framework (RDF)
[56,58], the standard language for annotating resources on the Web, and searched using the query language for RDF, called
SPARQL [59], that has been proposed by the World Wide Web Consortium (W3C) and has recently achieved the recommen-
dation status. Essentially, RDF data is a collection of statements, called triples, of the form ðs; p; oÞ, where s is called subject, p is
called predicate, and o is called object, and each triple states the relation between a subject and an object. Such a collection of
triples can be viewed as a directed graph, in which nodes represent subjects and objects, and edges represent predicates con-
necting from subject nodes to object nodes. To query RDF data, SPARQL allows the specification of triple and graph patterns
to be matched over RDF graphs.

Explosive growth of RDF data on the Web drives the need for novel database systems, called RDF stores, that can efficiently
store and query large RDF datasets. Most existing RDF stores, including Jena [63,62], Sesame [9], 3store [27,28], KAON [54],
RStar [35], OpenLink Virtuoso [22], DLDB [38], RDFSuite [3,52], DBOWL [37], PARKA [50], RDFProv [12], and RDFBroker [48]
use a relational database management system (RDBMS) as a backend to manage RDF data. The main advantage of the
. All rights reserved.
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RDBMS-based approach is that a mature and vigorous relational query engine with transactional processing support can be
reused to provide major functionalities for RDF stores. The main challenge of this approach is that one needs to resolve the
conflict between the graph RDF data model and the target relational data model. This usually requires various mappings,
such as schema mapping, data mapping, and query mapping, to be performed between the two data models. One of the most
difficult problems in this approach is the translation of SPARQL queries into equivalent relational algebra expressions and
SQL queries, which can be further optimized and evaluated by the relational query engine and their results can be returned
as SPARQL query solutions.

We identify three goals of SPARQL-to-SQL translation that are very important to achieve:

(1) Correctness. A semantics preserving translation is required to ensure that the semantics of a SPARQL query is equivalent
to the semantics of this query translated into SQL, such that the SPARQL and SQL queries produce equivalent results.

(2) Schema-independence. A generic translation which does not depend on a particular relational database schema can be
used for various database representations employed in existing RDF stores.

(3) Efficiency. An efficient translation should not only generate equivalent SQL queries quickly, but also ensure that gen-
erated queries are efficient in terms of their evaluation over a relational database.

Existing relational RDF stores implement different SPARQL-to-SQL translation algorithms based on subjective interpreta-
tions of the mapping-based semantics of SPARQL [59,39,40]. Although the mapping-based semantics of SPARQL defines a
precise and concise SPARQL query evaluation mechanism, it does not support SPARQL-to-SQL translation directly. As a result,
existing solutions succeed in approaching the goal of efficiency, but fail to show to be semantics preserving and/or generic.
The major obstacle to the definition of a mathematically rigorous SPARQL-to-SQL translation is the gap between RDF and
relational models, in general, and between SPARQL and SQL, in particular.

In this work, we define our relational algebra based semantics of SPARQL and propose the first provably semantics pre-
serving and generic SPARQL-to-SQL translation. Furthermore, we extend the semantics and translation to support the bag
semantics of a SPARQL query solution and outline our simplifications to the translation to generate simpler and more effi-
cient SQL queries. Our main contributions are summarized in the following:

� We formalize a relational algebra based semantics of SPARQL as a function eval, which bridges the gap between SPARQL
and SQL. We prove that eval is equivalent to the mapping-based semantics of SPARQL under the interpretation function1 k,
which is used to establish the equivalence relationship2 between two SPARQL solution representations: a relational represen-
tation and a mapping-based representation.

� We define a SPARQL-to-SQL translation as a function trans for core SPARQL constructs and prove that trans is semantics
preserving with respect to the relational algebra based semantics of SPARQL under the interpretation function /, which is
used to establish the equivalence relationship between a relation produced by the relational algebra based SPARQL
semantics eval and a relation produced by the evaluation of a trans-generated SQL query; eval and trans may produce rela-
tions with different relational attribute names due to the SQL naming constraints. trans supports the translation of SPARQL
queries with triple patterns, basic graph patterns, optional graph patterns, alternative graph patterns, and value con-
straints. trans is the first provably semantics preserving translation in the literature.

� We achieve the generic property for our SPARQL-to-SQL translation trans, such that it supports both schema-oblivious and
schema-aware database representations of existing RDBMS-based RDF stores. We do this by full separation of the trans-
lation from the relational database schema design (represented by RDF-to-Relational mappings a and b). We verify that
trans can be implemented in at least 12 existing RDF stores, including Jena, Sesame, 3store, KAON, RStar, OpenLink Virtu-
oso, DLDB, RDFSuite, DBOWL, PARKA, RDFProv, and RDFBroker.

� We outline a number of simplifications for the SPARQL-to-SQL translation to generate simpler and more efficient SQL que-
ries, and extend eval and trans to support the bag semantics of a SPARQL query solution.

� Finally, we conduct an experimental study to explore how our generic SPARQL-to-SQL translation compares to existing
schema dependent translations and how our proposed simplifications affect query performance.

The big picture of our research flow is illustrated in Fig. 1. At the data level, we define RDF-to-Relational mappings a and
b, which capture how an RDF graph is stored into a relational database. At the query level, the figure illustrates the first two
contributions discussed above, where the dashed arrow represents the mapping-based semantics of SPARQL defined in [39],
the dotted arrows represent our contributions to the definition of relational algebra based semantics of SPARQL, and the solid
arrows represent our contributions to the definition of the SPARQL-to-SQL translation. The leftmost () arrow represents
the equivalence between the two semantics definitions, and the rightmost () arrow represents that the translation is
semantics preserving with respect to the relational algebra based semantics of SPARQL. The third contribution, the generic
goal, is achieved by full separation of the translation from the relational database schema design via the use of mappings a
and b, that are first defined at the data level and later passed as parameters to the translation.
1 Here and after, by ‘‘under the interpretation function”, we mean that the function is applied to a query solution.
2 Here and after, by ‘‘equivalence” or ‘‘equivalence relationship”, we mean the mathematical equivalence between sets of elements (represent query

solutions) or functions (represent query language semantics), which should be clear from the context.
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Organization. The rest of the paper is organized as follows. Section 2 reviews related work on storing and querying Seman-
tic Web data using an RDBMS, in general, and on SPARQL-to-SQL translation, in particular. Section 3 presents preliminaries
for our work. Section 4 defines our relational algebra based semantics of SPARQL. Section 5 presents our semantics preserv-
ing SPARQL-to-SQL translation. Section 6 outlines our simplifications to the translation to generate simpler and more effi-
cient SQL queries. Section 7 deals with the extension of the semantics and translation to support the bag semantics of a
SPARQL query solution. Section 8 presents our experimental study. Finally, Section 9 concludes the paper and discusses pos-
sible future work.

2. Related work

In recent years, a number of RDBMS-based RDF stores (see [6] for a survey) have been developed to support large-scale
Semantic Web applications. To resolve the conflict between the graph RDF [56,58] data model and the target relational data
model, such systems require to deal with various mappings between the two data models, such as schema mapping, data
mapping, and query mapping (aka query translation). First, the schema mapping is used to generate a relational database
schema that can store RDF data. Second, the data mapping is used to shred RDF triples into relational tuples and insert them
into the database. Finally, the query mapping is used to translate a SPARQL query into an equivalent SQL query, which is
evaluated by the relational engine and its result is returned as a SPARQL query solution. In addition, RDF stores have to sup-
port inference of new RDF triples based on RDFS [57] or OWL [60] ontologies. In the following, we give more details on ad-
vances in RDF store design.

Based on database schemas employed by existing relational RDF stores, we can classify them into four categories:
Schema-oblivious (also called generic or vertical): A single relation, e.g., Triple(s,p,o), is used to store RDF triples, such that

attribute s stores the subject of a triple, p stores its predicate, and o stores its object. Schema-oblivious RDF stores include
Jena [63,62], Sesame [9], 3store [27,28], KAON [54], RStar [35], and OpenLink Virtuoso [22]. This approach has no concerns
of RDF schema or ontology evolution, since it employs a generic database representation.

Schema-aware (also called specific or binary): This approach usually employs an RDF schema or ontology to generate so
called property relations and class relations. A property relation, e.g., Property(s,o), is created for each property in an ontology
and stores subjects s and objects o related by this property. A class relation, e.g., Class(i), is created for each class in an ontol-
ogy and stores instances i of this class. An extension to the idea of property relations is a clustered property relation [64], e.g.,
Clustered(s; o1; o2; . . . ; on), which stores subjects s and objects o1; o2; . . . ; on related by n distinct properties (e.g., hs p1 o1i,
hs p2 o2i, etc.). In [12], along with property and class relations, we introduce class–subject and class–object relations. A
Please cite this article in press as: A. Chebotko et al., Semantics preserving SPARQL-to-SQL translation, Data Knowl. Eng. (2009),
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class–subject relation, e.g., ClassSubject(i,p,o), stores triples whose subjects are instances of a particular class in an ontology.
Similarly, a class–object relation, e.g., ClassObject(s,p, i), stores triples whose objects are instances of a particular class. Such
relations are useful for queries that retrieve all information about an instance (subject or object) of a particular class. Rep-
resentatives of schema-aware RDF stores are Jena [64,63,62], DLDB [38], RDFSuite [3,52], DBOWL [37], PARKA [50], and RDF-
Prov [11,12]. Schema evolution for this approach is quite straightforward: the addition or deletion of a class/property in an
ontology requires the addition or deletion of a relation (or relational tuples) in the database. More information on ontology
evolution can be found in [51] and [23]. The schema-aware approach is in general yields better query performance than the
schema-oblivious approach as has been shown in several experimental studies [2,52,3,12]. In addition, the use of a column-
oriented DBMS, in conjunction with vertical partitioning of relations, has shown further improvements in query performance
[1].

Data-driven: This approach uses an RDF data, as opposed to an RDF schema or ontology, to generate database schema. For
example, in [21], a database schema is generated based on patterns found in RDF data using data mining techniques. In gen-
eral, relations generated by the schema-aware approach can also be supported by the data-driven approach (e.g., property
relations in Sesame [10] are created when their instances are first seen in an RDF document during data mapping). RDF store
RDFBroker [48] implements signature relations, which are conceptually similar to clustered property relations, but are gen-
erated based on RDF data rather than RDF Schema information. RDFBroker [48] reports improved in-memory query perfor-
mance over Sesame and Jena for some test queries. Schema evolution for the data-driven approach, if supported, might be
expensive.

Hybrid: This approach uses the mix of features of the previous approaches. An example of the hybrid database schema
(resulted from schema-oblivious and schema-aware approaches) is presented in [52], where a schema-oblivious database
representation, e.g., Triple(s,p,o), is partitioned into multiple relations based on the data type of object o, and a binary rela-
tion, e.g., Classði; cÞ, is introduced to store instances i of classes c. Theoharis et al. [52] reports comparable query performance
of the hybrid and schema-aware approaches.

Data mapping algorithms employed by existing RDF stores are usually fairly straightforward, such that RDF triples are
inserted into a single relation as in the schema-oblivious approach, or into one or multiple relations as in the other ap-
proaches. Several data mapping strategies and algorithms are presented in [12].

Inference support techniques employed by RDF stores can be classified as forward-chaining or backward-chaining. In for-
ward-chaining, all inferences are precomputed and stored along with explicit triples of an RDF graph. This enables fast query
response and increased result completeness [24]; however, it complicates RDF data updates and consumes more storage
space. The forward-chaining inference can be supported on the data mapping stage. In backward-chaining, inferences are
computed dynamically for each query, which simplifies updates and omits a storage overhead, but results in worse query
performance and scalability. This technique is bound by the main memory space required to compute inferences. The back-
ward-chaining inference can be supported on the query mapping stage. Additional readings on inference for Semantic Web
include [66,36,32,4].

One of the most difficult mappings in RDBMS-based RDF stores is the query mapping. Related literature on the SPARQL-
to-SQL query translation, SPARQL query processing and optimization includes the following research works. Harris and
Shadbolt [28] show how basic graph pattern expressions, as well as simple optional graph patterns, can be translated into
relational algebra expressions. Cyganiak [20] presents a relational algebra for SPARQL and outlines rules establishing equiv-
alence between this algebra and SQL. In [14], we present algorithms for basic and optional graph pattern translation into SQL.
The W3C semantics of SPARQL [59] has changed since then, which was triggered by the compositional semantics presented
by Perez et al. [39,40]. The new semantics defines the same evaluation results for the most common in practice SPARQL que-
ries with so called well-designed patterns [39], but it is different from the previously used semantics for other queries.
Therefore, research results on the SPARQL-to-SQL translation described above need to be revisited to accommodate graph
patterns which are not well-designed.

One of the first SPARQL-to-SQL translations that is based on the new semantics is outlined by Zemke [65]. Our translation
in this work, besides being derived from the relational algebra based semantics, has several distinct features when compared
to the translation in [65]: (1) We prove that our translation is semantics preserving; (2) We explicitly define RDF-to-Rela-
tional mappings to make our translation generic or database schema independent; (3) We do not require SQL constructs like
With or Case-When-Then-Else-End which are not supported by all relational databases; (4) We do not require to main-
tain the history of each subpattern solution to indicate that a constant subpattern (e.g., with no variables or blank nodes) has
been matched; and (5) We provide several simplifications to the translation to generate simpler and more efficient SQL
queries.

More recently, in [11,12], we define a SPARQL-to-SQL translation algorithm for basic graph pattern queries, which is opti-
mized to select the smallest relations to query based on the type information of an instance and the statistics of the size of
the relations in the database, as well as to eliminate redundancies in basic graph patterns. To improve the evaluation per-
formance of the SPARQL optional graph patterns in a relational database, in [13,10], we propose a novel relational operator,
called nested optional join, that shows better performance than conventional left outer join implementations.

Polleres [41] and Schenk [45] contribute with the translation of SPARQL queries into Datalog. Anyanwu et al. [5] propose
an extended SPARQL query language called SPARQ2L, which supports subgraph extraction queries. Serfiotis et al. [46] study
the containment and minimization problems of RDF query fragments using a logic framework that allows to reduce these
problems into their relational equivalents. Hartig and Heese [30] propose a SPARQL query graph model and pursue query
Please cite this article in press as: A. Chebotko et al., Semantics preserving SPARQL-to-SQL translation, Data Knowl. Eng. (2009),
doi:10.1016/j.datak.2009.04.001
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rewriting based on this model. Stocker et al. [49] study the problem of SPARQL basic graph pattern optimization using selec-
tivity estimation. Harth and Decker [29] propose optimized index structures for RDF that can support efficient evaluation of
select-project-join queries and can be implemented in a relational database. Udrea et al. [53] propose an in-memory index
structure to store RDF graph regions defined by center nodes and their associated radii; the index helps to reduce the number
of joins during SPARQL query evaluation. Weiss et al. [61] introduce a sextuple-indexing scheme that can support efficient
querying of RDF data based on six types of indexes, one for each possible ordering of a subject, predicate, and object. Chong
et al. [16] introduce an SQL table function into the Oracle database to query RDF data, such that the function can be combined
with SQL statements for further processing. Hung et al. [31] study the problem of RDF aggregate queries by extending an RDF
query language with the GROUP BY clause and several aggregate functions. Schenk and Staab [44], Volz et al. [55], and Mag-
kanaraki et al. [34] define RDF and SPARQL views for RDF data personalization and integration. Several research works
[42,43,33,8] focus on accessing conventional relational databases using SPARQL, which requires the SPARQL-to-SQL query
translation. Finally, Guo et al. [26,25] define requirements for Semantic Web knowledge base systems benchmarks and pro-
pose a framework for developing such benchmarks.

3. Preliminaries

In this section, we formalize the core fragment of SPARQL over RDF without RDFS vocabulary and literal rules, and give an
overview of the mapping-based semantics [39] of SPARQL.

3.1. Syntax of SPARQL and RDF

Let I, B, L, and V denote pairwise disjoint infinite sets of Internationalized Resource Identifiers (IRIs), blank nodes, literals,
and variables, respectively. Let IB, IL, IV, IBL, and IVL denote I [ B, I [ L, I [ V , I [ B [ L, and I [ V [ L, respectively. Elements of
the set IBL are also called RDF terms. In the following, we formalize the notions of RDF triple, RDF graph, triple pattern, graph
pattern, and SPARQL query.

Definition 3.1 (RDF triple and RDF graph). An RDF triple t is a tuple ðs; p; oÞ 2 ðIBÞ � I � ðIBLÞ, where s, p, and o are a subject,
predicate, and object, respectively. An RDF graph G is a set of RDF triples.

A sample RDF graph that we use for subsequent examples is shown in Fig. 2. The RDF graph is represented as a set of 11
triples, as well as a labeled graph, in which edges are directed from subjects to objects and represent predicates, circles de-
note IRIs, and rectangles denote literals.

We focus on the core fragment of SPARQL defined in the following.

Definition 3.2 (Triple pattern). A triple pattern tp is a triple ðsp; pp; opÞ 2 ðIVLÞ � ðIVÞ � ðIVLÞ, where sp,3 pp, and op are a
subject pattern, predicate pattern, and object pattern, respectively.

Definition 3.3 (Graph pattern). A graph pattern gp is defined by the following abstract grammar:
3 Note that a triple pattern can have a literal as a subject pattern, while an RDF triple cannot have a literal as a subject. This inconsistency between current
RDF [58] and SPARQL [59] specifications does not affect our work and most likely will be resolved by W3C.

Please cite this article in press as: A. Chebotko et al., Semantics preserving SPARQL-to-SQL translation, Data Knowl. Eng. (2009),
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gp! tp j gp AND gp j gp OPT gp j gp UNION gp j gp FILTER expr
where AND, OPT, and UNION are binary operators that correspond to SPARQL conjunction, OPTIONAL, and UNION constructs,
respectively. FILTER expr represents the FILTER construct with a boolean expression expr, which is constructed using ele-
ments of the set IVL, constants, logical connectives (:, _, ^), inequality symbols (<, 6, P, >), the equality symbol (¼), unary
predicates like bound, isIRI, and other features defined in [59]. We define function varðgpÞ to return the set of variables that
appear in gp.

Definition 3.4 (SPARQL query). A SPARQL query sparql is defined as
sparql! SELECT varlist WHERE ðgpÞ
where varlist ¼ ðv1; v2; . . . ; vnÞ is an ordered list of variables and varlist # varðgpÞ. We define Q as an infinite set of all possible
SPARQL queries that can be generated by the defined grammar.

For simplicity, we do not explicitly introduce blank nodes in the triple pattern definition. Such nodes can be considered as
special kinds of variables (part of V), so called non-distinguished variables, with two restricting properties [59]: (1) same blank
node labels cannot be used in two different basic graph patterns in the same query, and therefore, blank nodes are variables
that are always scoped to the basic graph pattern (set of triple patterns), and (2) blank node labels cannot occur in the varlist
of the SPARQL query, and therefore, blank node bindings are not part of the query solution. Despite these syntactic con-
straints, blank nodes share the same semantics with regular variables and can be treated the same way. Our findings, which
we present in this article, are fully applicable to blank nodes without any modification.

3.2. An overview of the mapping-based semantics of SPARQL

In the following, we present a mapping-based representation of a SPARQL query solution and provide a brief overview of
the mapping-based semantics of SPARQL defined in [39].

Definition 3.5 (Mapping-based representation of a SPARQL query solution). Let a mapping l : V ! IBL be a partial function
that assigns RDF terms of an RDF graph to variables of a SPARQL query. The domain of l, domðlÞ, is the subset of V over
which l is defined. The empty mapping l; is the mapping with empty domain. Then, the mapping-based representation of a
SPARQL query solution is a set X of mappings l. We define R as an infinite set of all possible mapping-sets, each of which
represents a SPARQL query solution.

Example 3.6 (Mapping-based representation of a SPARQL query solution). Consider a graph pattern ð?a; email; ?eÞ OPT
ð?a;web; ?wÞ that queries the RDF graph (see Fig. 2) for an email ?e of a person ?a and, if available, for a web page ?w of
?a, where ?a, ?e, and ?w are variables and email and web are Uniform Resource Identifiers (URIs). The graph pattern solution
is represented as follows:
l1 is the result of successful match of the triple pattern ð?a; email; ?eÞ against triple ðB2; email; john@john:eduÞ. l2 is the result
of successful match of the triple patterns ð?a; email; ?eÞ and ð?a;web; ?wÞ against triples ðB4; email; ringo@ringo:eduÞ and
ðB4;web;www:starr:eduÞ, respectively.

Two mappings l1 and l2 are compatible when for all x 2 domðl1Þ \ domðl2Þ, it is the case that l1ðxÞ ¼ l2ðxÞ; mappings
with disjoint domains are always compatible; and l; is compatible with any other mapping. Let X1 and X2 be sets of map-
pings. In [39], the following operators (join, union, difference, and left outer join) are defined between X1 and X2:

X1 ffl X2 ¼ fl1 [ l2 j l1 2 X1;l2 2 X2 are compatible mappings},
X1 [X2 ¼ fl j l 2 X1 or l 2 X2g,
X1 nX2 ¼ fl 2 X1 j for all l0 2 X2;l and l0 are not compatible},
X1 :ffl X2 ¼ f X1 ffl X2ð Þ [ X1 nX2ð Þg.

The mapping-based semantics of SPARQL is defined as a function s � tG which takes a graph pattern expression or a SPAR-
QL query and an RDF graph G and returns a set of mappings. The definition of s � t is presented in Fig. 3, where Rules 1–6
define the evaluation of triple pattern tp, gp1 AND gp2, gp1 OPT gp2, gp1 UNION gp2, gp FILTER expr, and
SELECT ðv1; v2; . . . ; vnÞ WHEREðgpÞ, respectively, over an RDF graph G. Detailed description of s � t with illustrative examples
is available in [39].

Although the mapping-based semantics of SPARQL defines a precise and concise SPARQL query evaluation mechanism, it
does not support SPARQL-to-SQL translation directly. One step forward is the definition of an equivalent relational algebra
based semantics of SPARQL. However, formalizing such a semantics is challenging because:
cite this article in press as: A. Chebotko et al., Semantics preserving SPARQL-to-SQL translation, Data Knowl. Eng. (2009),
.1016/j.datak.2009.04.001
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� While the mapping-based semantics works under the abstract form of partial functions, a relational algebra based seman-
tics has to work under the concrete form of total functions, where each relational tuple is interpreted as a total function. A
relational representation of a SPARQL query solution is required.

� The notion of empty mapping, i.e. a mapping with an empty domain, cannot be directly modeled using the relational alge-
bra, because a tuple is defined on a non-empty set of relational attributes. Empty mappings occur when graph patterns
have no variables, and therefore, a relational solution cannot store only variable bindings for such graph patterns.

� One variable may occur in a triple pattern multiple times at various positions (subject, predicate, and object) simulta-
neously. A generic algorithm is needed to generate a select condition to ensure that multiple occurrences of the same var-
iable are bounded to the same value. In addition, a generic algorithm is needed to generate a projection list to eliminate
arbitrary duplicate relational attributes, which are disallowed in the relational model.

� To encode the semantics of group graph patterns and optional graph patterns, we need to consider that one variable might
occur multiple times within different subpatterns and also across each other. These variables might be in a different bind-
ing status: unbound or bound to different or the same values. While the mapping-based semantics defines an abstract
notion of ‘‘compatible mappings”, encoding such a notion in our concrete relational model is a very challenging task
due to the difference between underlying solution representations and the difference between the mapping-based oper-
ators and relational algebra operators. In addition, inner or outer join resulting relations may have redundant attributes
that must be eliminated.

� In contrast to the mapping-based union operator, the relational union requires its operands to be union-compatible, which
frequently may not be the case. Therefore, the mapping-based union cannot be simply substituted by the relational union.
Please cite this article in press as: A. Chebotko et al., Semantics preserving SPARQL-to-SQL translation, Data Knowl. Eng. (2009),
doi:10.1016/j.datak.2009.04.001
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� Finally, while evaluating value constraints, the mapping-based semantics relies on mapping domains to detect unbound
variables; however, a relational algebra based semantics cannot assume that unbound variables are not represented in a
relational schema. A different mechanism is needed to deal with this situation.

4. Relational algebra based semantics of SPARQL

In this section, we first present our relational representation of a SPARQL query solution. Second, we define an interpre-
tation function k to relate the relational and mapping-based representations. Finally, we define our relational algebra based
semantics of SPARQL and prove its equivalence to the mapping-based semantics.

Definition 4.1 (Relational representation of a SPARQL query solution). Let a tuple r : IVL! IBL [ fNULLg be a total function,
that assigns RDF terms of an RDF graph to URIs, literals, and variables of a SPARQL query, i.e. a URI or a literal is mapped to
itself or to NULL, and a variable is mapped to an element of set IBL [ fNULLg, where NULL denotes an undefined or unbound
value. Then, the relational representation of a SPARQL query solution is a set R of tuples r or simply a relation R. The schema
of R, denoted as nðRÞ, is the subset of IVL over which each tuple r 2 R is defined; abusing the notation, we denote a tuple
schema as nðrÞ and nðrÞ � nðRÞ for all r 2 R. We define R as an infinite set of all possible relations, each of which represents a
SPARQL query solution.

Example 4.2 (Relational representation of a SPARQL query solution). Following the previous example, consider the same graph
pattern ð?a; email; ?eÞ OPT ð?a;web; ?wÞ. Its solution over the RDF graph (see Fig. 2) is represented as follows:
Please
doi:10
r1 is the result of successful match of the triple pattern ð?a; email; ?eÞ against triple ðB2; email; john@john:eduÞ. r2 is the result
of successful match of the triple patterns ð?a; email; ?eÞ and ð?a;web; ?wÞ against triples ðB4; email; ringo@ringo:eduÞ and
ðB4;web;www:starr:eduÞ, respectively.

To relate the relational representation and the mapping-based representation, we define an interpretation function k as
follows.

Definition 4.3 (Interpretation function k). We define interpretation function k : R! R as the function that takes a relation
R 2 R and returns a mapping-set X 2 R, such that each tuple r 2 R is assigned a mapping l 2 X in the following way: if
x 2 nðrÞ, x 2 V and rðxÞ is not NULL, then x 2 domðlÞ and lðxÞ ¼ rðxÞ.

The example below shows that the interpretation function k can serve as a tool to establish the equivalence relationship
between SPARQL query solutions when different representations are used.

Example 4.4 (Interpretation function k). Given the solution X from Example 3.6 and the solution R from Example 4.2, one can
verify that kðRÞ � X
Before we define the relational algebra based semantics of SPARQL, we need to introduce the following notations: R, R1,
R2, and R3 denote relations, nðRÞ denotes the schema of a relation R, ffl denotes an inner join, :ffl denotes a left outer join, ]
denotes an outerunion, = denotes a set difference, and q, r, and p denote renaming, selection, and projection operators of the
relational algebra, respectively. In addition, we introduce a new relational operator y and two auxiliary functions, genCond
and genPR, in the following.

Definition 4.5 (Relational operator y). Given a relation R with schema nðRÞ, two distinct relational attributes a; b 2 nðRÞ, and a
relational attribute c R nðRÞ=fa; bg, the relational operator yða;bÞ!cðRÞ merges attributes a and b of relation R into one single
attribute c in the following way: for each tuple r 2 R, if rðaÞ is not NULL then rðcÞ  rðaÞ, else rðcÞ  rðbÞ.

We show that y can be derived from existing relational operators.

Theorem 4.6. Relational operator y can be derived from existing relational operators as follows:
yða;bÞ!cðRÞ ¼ qa!cpnðRÞ=fbgðra is not NULLðRÞÞ
[

qb!cpnðRÞ=fagðra is NULLðRÞÞ:
The proof of Theorem 4.6 is available in [15].
cite this article in press as: A. Chebotko et al., Semantics preserving SPARQL-to-SQL translation, Data Knowl. Eng. (2009),
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Example 4.7 (Relational operator y). Consider the following evaluation of yða;bÞ!cðRÞ based on Theorem 4.6
Please
doi:10
Further, we extend the definition of the y operator to multiple attribute pair merging.

Definition 4.8 (Extended relational operator y). Given a relation R with schema nðRÞ, n pairs ða1; b1Þ; ða2; b2Þ; . . . ; ðan; bnÞ,
where a1; b1; a2; b2; . . . ; an; bn 2 nðRÞ are all distinct relational attributes, and n distinct relational attributes
c1; c2; . . . ; cn R nðRÞ=fa1; b1; a2; b2; . . . ; an; bng, the relational operator yða1 ;b1Þ!c1;ða2 ;b2Þ!c2;...;ðan ;bnÞ!cn

ðRÞ is defined recursively as:
yða1 ;b1Þ!c1 ;ða2 ;b2Þ!c2 ;...; an ;bnð Þ!cn
ðRÞ ¼ y�

a1 ;b1

�
!c1
yða2 ;b2Þ!c2 ;...; an ;bnð Þ!cn

ðRÞ
� �

:

The two auxiliary functions are defined in Fig. 4. Given a triple pattern tp, function genCond generates a boolean expres-
sion which is evaluated to true if and only if tp matches an RDF triple t. The boolean expression ensures that either tp:sp is a
variable and thus can match any RDF term or tp:sp ¼ t:s; similar conditions are introduced for tp:pp and tp:op. Also, if
tp:sp ¼ tp:pp, then for tp to match t, it must be true that t:s ¼ t:p; similarly for the cases when tp:sp ¼ tp:op and tp:op ¼ tp:pp.

Example 4.9 (Function genCond). Given triple patterns tp1 ¼ ð?a; email; ?eÞ and tp2 ¼ ð?a; email; ?aÞ, genCond generates the
following conditions for tp1 and tp2 to match t:
genCondðtp1Þ ¼ ðtp1:sp 2 V _ tp1:sp ¼ t:sÞ ^ ðtp1:pp 2 V _ tp1:pp ¼ t:pÞ ^ ðtp1:op 2 V _ tp1:op ¼ t:oÞ
¼ ð?a 2 V _ ?a ¼ t:sÞ ^ ðemail 2 V _ email ¼ t:pÞ ^ ð?e 2 V _ ?e ¼ t:oÞ ¼ ðemail ¼ t:pÞ
For triple t ¼ ðB2; email; john@john:eduÞ, genCondðtp1Þ is evaluated to ðemail ¼ emailÞ ¼ true and therefore, tp1 matches t:
genCondðtp2Þ ¼ ðtp2:sp 2 V _ tp2:sp ¼ t:sÞ ^ ðtp2:pp 2 V _ tp2:pp ¼ t:pÞ ^ ðtp2:op 2 V _ tp2:op ¼ t:oÞ ^ ðt:s ¼ t:oÞ
¼ ð?a 2 V _ ?a ¼ t:sÞ ^ ðemail 2 V _ email ¼ t:pÞ ^ ð?a 2 V _ ?a ¼ t:oÞ ^ ðt:s ¼ t:oÞ ¼ ðemail

¼ t:pÞ ^ ðt:s ¼ t:oÞ
For triple t ¼ ðB2; email; john@john:eduÞ, genCondðtp2Þ is evaluated to ðemail ¼ emailÞ ^ ðB2 ¼ john@john:eduÞ ¼ false and
therefore, tp2 does not match t.
Fig. 4. Functions genCond and genPR.

cite this article in press as: A. Chebotko et al., Semantics preserving SPARQL-to-SQL translation, Data Knowl. Eng. (2009),
.1016/j.datak.2009.04.001
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Let relation R with schema nðRÞ ¼ ðs; p; oÞ store the subset of triples of G that match triple pattern tp. We define function
genPR that, given a triple pattern tp, generates a relational algebra expression which projects only those attributes of relation
R that correspond to distinct tp:sp, tp:pp, and tp:op and renames the projected attributes as s! tp:sp, p! tp:pp, and
o! tp:op. R:s is always projected and renamed into tp:sp, R:p is projected and renamed into tp:pp if tp:pp–tp:sp, and R:o
is projected and renamed into tp:op if tp:op–tp:sp and tp:op–tp:pp. This projection procedure ensures that, after attribute
renaming, the schema of the resulting relation does not have duplicate attribute names.

Example 4.10 (Function genPR). For the purpose of this example only, we extend the RDF graph G in Fig. 2 with the
additional triple ðB5; email;B5Þ. Given triple patterns tp1 ¼ ð?a; email; ?eÞ and tp2 ¼ ð?a; email; ?aÞ, genPR generates the
following relational algebra expressions:
Please
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genPRðtp1Þ ¼ qs!tp1 :sp;p!tp1 :pp;o!tp1 :opps;p;oðRÞ ¼ qs!?a;p!email;o!?eps;p;oðRÞ
genPRðtp2Þ ¼ qs!tp2 :sp;p!tp2 :ppps;pðRÞ ¼ qs!?a;p!emailps;pðRÞ
Let relation R store the subset of triples of G that match tp1 (tp2). The evaluation of the generated expressions for R is as
follows:
We define the relational algebra based semantics of SPARQL as a function eval which takes a graph pattern expression or a
SPARQL query and an RDF graph and returns a resulting relation. In Fig. 5, eval is defined as a set of premise-conclusion rules
explained in the following.

Rule 7 defines the evaluation of a triple pattern tp over G in two steps. First, the relation R with the fixed schema
nðRÞ ¼ ðs; p; oÞ is created and all the triples t 2 G that match tp based on the condition generated by genCondðtpÞ are stored
into R. Then, attributes of R are projected and renamed based on the relational algebra expression generated by genPRðtpÞ and
the new relation R2 is created. Finally, R2 is assigned as a solution to the triple pattern.

Example 4.11 (Rule 7: evalðtp;GÞ). The evaluation of the triple pattern tp1 ¼ ð?a; email; ?eÞ over the RDF graph G in Fig. 2 is as
follows:
Similarly, the evaluation of the triple pattern tp2 ¼ ð?a;web; ?wÞ over the RDF graph G in Fig. 2 results in the following:
Rule 8 defines the evaluation of the AND of two graph patterns gp1 and gp2 as the inner join of relations R1 ¼ evalðgp1;GÞ
and R2 ¼ evalðgp2;GÞ. The join condition ensures that for every pair of common relational attributes R1:ai;R2:aið Þ where
ai 2 nðR1Þ \ nðR2Þ, their values are equal R1:ai ¼ R2:ai or one or both values are NULLs. The y operator is used to merge redun-
dant attributes of the join-resulting relation into one, such that out of each pair of attributes (R1:ai, R2:ai), only one is pro-
jected and renamed into ai. R1:ai is projected for those tuples whose corresponding value is not NULL, otherwise R2:ai is
projected. Other attributes of R1 and R2 are projected per se.

Example 4.12 (Rule 8: evalðgp1 AND gp2;GÞ). Given triple patterns tp1 ¼ ð?a, email; ?eÞ and tp2 ¼ ð?a;web; ?wÞ, the
evaluation of the graph pattern ðtp1 AND tp2Þ over the RDF graph G in Fig. 2 is as follows. Let evalðtp1;GÞ ¼ R1 (see Example
4.11) and evalðtp2;GÞ ¼ R2 (see Example 4.11), then
cite this article in press as: A. Chebotko et al., Semantics preserving SPARQL-to-SQL translation, Data Knowl. Eng. (2009),
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Rule 9 defines the evaluation of the OPT of two graph patterns gp1 and gp2 as the left outer join of relations
R1 ¼ evalðgp1;GÞ and R2 ¼ evalðgp2;GÞ. The join condition and the use of the y operator are analogous to the previous rule.
The only difference between the evaluations of AND and OPT operators is the use of inner join and left outer join,
respectively.

Example 4.13 (Rule 9: evalðgp1 OPT gp2;GÞ). Given triple patterns tp1 ¼ ð?a, email; ?eÞ and tp2 ¼ ð?a;web; ?wÞ, the evaluation
of the graph pattern ðtp1 OPT tp2Þ over the RDF graph G in Fig. 2 is as follows. Let evalðtp1;GÞ ¼ R1 (see Example 4.11) and
evalðtp2;GÞ ¼ R2 (see Example 4.11), then
cite this article in press as: A. Chebotko et al., Semantics preserving SPARQL-to-SQL translation, Data Knowl. Eng. (2009),
.1016/j.datak.2009.04.001
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Rule 10 defines the evaluation of the UNION of two graph patterns gp1 and gp2 as the outerunion of relations
R1 ¼ evalðgp1;GÞ and R2 ¼ evalðgp2;GÞ. The outerunion NULL-pads the tuples of each relation to schema nðR1Þ [ nðR2Þ and
computes the union of the resulting relations [18]. If R1 and R2 have identical schemas, i.e. nðR1Þ � nðR2Þ, then the outerunion
is equivalent to the relational union, i.e. R1 ] R2 � R1 [ R2.

Example 4.14 (Rule 10: evalðgp1 UNION gp2;GÞ). Given triple patterns tp1 ¼ ð?a; email; ?eÞ and tp2 ¼ ð?a;web; ?wÞ, the
evaluation of the graph pattern ðtp1 UNION tp2Þ over the RDF graph G in Fig. 2 is as follows. Let evalðtp1;GÞ ¼ R1 and
evalðtp2;GÞ ¼ R2, then
Rule 11 defines the evaluation of the FILTER expression expr for graph pattern gp as the subset of tuples R of relation
R1 ¼ evalðgp;GÞ, for which the condition exprðrÞ is true. The semantics of exprðrÞ is elaborated in Fig. 5.

Example 4.15 (Rule 11: evalðgp FILTER expr;GÞ). Given the graph pattern gp ¼ ð?a; email; ?eÞ OPT ð?a;web; ?wÞ and the
boolean expression expr ¼ :boundð?wÞ, the evaluation of the graph pattern gp FILTER expr over the RDF graph G in Fig. 2 is as
follows. Let evalðgp;GÞ ¼ R (see Example 4.13), then
Finally, Rule 12 defines the evaluation of a SPARQL query as the projection of specified variables v1; v2; . . . ; vn from the
relation corresponding to the evaluation of the query graph pattern gp.

Example 4.16 (Rule 12: evalðSELECT ðv1; v2; . . . ; vnÞ WHEREðgpÞ;GÞ). Given the graph pattern gp ¼ ð?a; email; ?eÞ OPT
ð?a;web; ?wÞ and the variable list ð?a; ?e; ?wÞ, the evaluation of the SPARQL query SELECT ð?a; ?e; ?wÞ WHEREðgpÞ over the
RDF graph G in Fig. 2 is as follows. Let evalðgp;GÞ ¼ R (see Example 4.13), then
Additionally, we illustrate how eval works on several more complex queries. To facilitate easy comparison of the rela-
tional algebra based semantics with the mapping-based semantics, we use similar RDF graph and queries as in [39]. For each
SPARQL query Qi below and the RDF graph G in Fig. 2, one can verify that kðevalðQ i;GÞÞ � sQ itG, where s � t is the mapping-
based semantics of SPARQL defined in [39].

Example 4.17 (Evaluation of more complex SPARQL queries). The following are sample SPARQL queries and their evaluations
over the RDF graph G in Fig. 2: The first query includes two OPT operators that correspond to the case of so called sequential
OPTIONALs.

Q1 : SELECT ?a; ?n; ?e; ?w WHERE ððð?a; name; ?nÞ OPT ð?a; email; ?eÞÞ OPT ð?a;web; ?wÞÞ.
R1 ¼ evalðð?a;name; ?nÞ;GÞ ¼ fðB1;name; paulÞ; ðB2;name; johnÞ; ðB3;name; georgeÞ; ðB4;name; ringoÞg
R2 ¼ evalðð?a; email; ?eÞ;GÞ ¼ fðB2; email; john@john:eduÞ; ðB4; email; ringo@ringo:eduÞg
R3 ¼ evalðð?a;web; ?wÞ;GÞ ¼ fðB3;web;www:george:eduÞ; ðB4;web;www:starr:eduÞg
cite this article in press as: A. Chebotko et al., Semantics preserving SPARQL-to-SQL translation, Data Knowl. Eng. (2009),
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R4 ¼ evalðð?a;name; ?nÞ OPT ð?a; email; ?eÞ;GÞ ¼ yðR1 :?a;R2 :?aÞ!?a ðR1 : fflðR1 :?a¼R2 :?a_R1 :?a is NULL _ R2 :?a is NULL ÞR2Þ ¼ fðB1;name;
paul;NULL;NULLÞ; ðB2;name; john; email; john@john:eduÞ; ðB3;name; george; NULL;NULLÞ; ðB4;name; ringo; email; ringo@

ringo:eduÞg
evalðQ1;GÞ ¼ p?a;?n;?e;?wðyðR4 :?a;R3 :?aÞ!?a ðR4 : fflðR4 :?a¼R3 :?a_R4 :?a is NULL _R3 :?a is NULL ÞR3ÞÞ ¼
ase
i:10
The second query is similar to the first one, except that variables ?e and ?w are substituted by the same variable ?ew.

Q2 : SELECT ?a; ?n; ?ew WHERE ððð?a;name; ?nÞ OPT ð?a; email; ?ewÞÞ OPT ð?a;web; ?ewÞÞ.
R1 ¼ evalðð?a;name; ?nÞ;GÞ ¼ fðB1;name; paulÞ; ðB2;name; johnÞ; ðB3;name; georgeÞ; ðB4;name; ringoÞg
R2 ¼ evalðð?a; email; ?ewÞ;GÞ ¼ fðB2; email; john@john:eduÞ; ðB4; email; ringo@ringo:eduÞg
R3 ¼ evalðð?a;web; ?ewÞ;GÞ ¼ fðB3;web;www:george:eduÞ; ðB4;web;www:starr:eduÞg
R4 ¼ evalðð?a;name; ?nÞ OPT ð?a; email; ?ewÞ;GÞ ¼ yðR1 :?a;R2 :?aÞ!?a ðR1 : fflðR1 :?a¼R2 :?a_R1 :?a is NULL _ R2 :?a is NULLÞ R2Þ ¼ fðB1;name;
paul;NULL;NULLÞ; ðB2;name; john;email; john@john:eduÞ; ðB3;name;george; NULL;NULLÞ; ðB4;name;ringo;email;ringo@ringo:
eduÞg

evalðQ 2;GÞ¼p?a;?n;?ewðyðR4 :?a;R3 :?aÞ!?a;ðR4 :?ew;R3 :?ewÞ!?ew ðR4 :fflðR4 :?a¼R3 :?a_R4 :?aisNULL_R3 :?aisNULLÞ^ðR4 :?ew¼R3 :?ew_R4 :?ewisNULL_R3 :?ewisNULL ÞR3ÞÞ¼
The third query includes two OPT operators that correspond to the case of so called nested OPTIONALs.

Q3 : SELECT ?a; ?n; ?e; ?w WHERE ðð?a;name; ?nÞ OPT ðð?a; email; ?eÞ OPT ð?a;web; ?wÞÞÞ.
R1 ¼ evalðð?a;name; ?nÞ;GÞ ¼ fðB1;name; paulÞ; ðB2;name; johnÞ; ðB3;name; georgeÞ; ðB4;name; ringoÞg
R2 ¼ evalðð?a; email; ?eÞ;GÞ ¼ fðB2; email; john@john:eduÞ; ðB4; email; ringo@ringo:eduÞg
R3 ¼ evalðð?a;web; ?wÞ;GÞ ¼ fðB3;web;www:george:eduÞ; ðB4;web;www:starr:eduÞg
R4 ¼ evalðð?a; email; ?eÞ OPT ð?a;web; ?wÞ;GÞ ¼ yðR2 :?a;R3 :?aÞ!?a ðR2 : fflðR2 :?a¼R3 :?a_R2 :?a is NULL _ R3 :?a is NULL ÞR3Þ ¼ fðB2; email;
john@john:edu;NULL;NULLÞ;ðB4;email;ringo@ringo:edu;web;www:starr:eduÞg

evalðQ3;GÞ ¼p?a;?n;?e;?wðyðR1 :?a;R4 :?aÞ!?a ðR1 :fflðR1 :?a¼R4 :?a_R1 :?a is NULL _R4 :?a is NULL ÞR4ÞÞ ¼
The fourth query includes two nested OPT operators, however the query contains so called ‘‘not-well-designed” graph
pattern [39], i.e. ?x occurs in both ð?x;name; paulÞ and ð?x; email; ?zÞ, but not in the intermediate subpattern ð?y;name;
georgeÞ.

Q4 : SELECT ?x; ?y; ?z WHERE ðð?x;name; paulÞ OPT ðð?y;name; georgeÞ OPT ð?x; email; ?zÞÞÞ.
R1 ¼ evalðð?x;name; paulÞ;GÞ ¼ fðB1;name; paulÞg
R2 ¼ evalðð?y;name; georgeÞ;GÞ ¼ fðB3;name; georgeÞg
R3 ¼ evalðð?x; email; ?zÞ;GÞ ¼ fðB2; email; john@john:eduÞ; ðB4; email; ringo@ringo:eduÞg
R4 ¼ evalðð?y;name;georgeÞ OPT ð?x;email;?zÞ;GÞ ¼ ðR2 :fflðtrueÞR3Þ ¼ fðB3;name;george;B2;email; john@john:eduÞ; ðB3;name;
george;B4;email;ringo@ringo:eduÞg

evalðQ 4;GÞ¼p?x;?y;?zðyðR1 :?x;R4 :?xÞ!?x;ðR1 :name;R4 :nameÞ!name ðR1 :fflðR1 :?x¼R4 :?x_R1 :?xisNULL_R4 :?xisNULLÞ^ðR1 :name¼R4 :name_R1 :nameisNULL_R4 :nameisNULL ÞR4ÞÞ¼
cite this article in press as: A. Chebotko et al., Semantics preserving SPARQL-to-SQL translation, Data Knowl. Eng. (2009),
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The last query includes AND and UNION operators. This query is interesting because triple patterns that participate in the
UNION contain the same variables ?a and ?p, while differ in predicate patterns phone and cell.

Q5 : SELECT ?a; ?n; ?p WHERE ðð?a;name; ?nÞ AND ðð?a; phone; ?pÞ UNION ð?a; cell; ?pÞÞÞ.
R1 ¼ evalðð?a;name; ?nÞ;GÞ ¼ fðB1;name; paulÞ; ðB2;name; johnÞ; ðB3;name; georgeÞ; ðB4;name; ringoÞg
R2 ¼ evalðð?a; phone; ?pÞ;GÞ ¼ fðB1; phone;111� 1111Þ; ðB4; phone;444� 4444Þg
R3 ¼ evalðð?a; cell; ?pÞ;GÞ ¼ fðB4; phone;444� 4444Þg
R4 ¼ evalðð?a; phone; ?pÞ UNION ð?a; cell; ?pÞ;GÞ ¼ R2 ] R3 ¼ fðB1; phone;111� 1111;NULLÞ; ðB4; phone;444� 4444;NULLÞ;
ðB4;NULL;444� 4444; cellÞg
R5 ¼ yðR1 :?a;R4 :?aÞ!?a ðR1fflðR1 :?a¼R4 :?a_R1 :?a is NULL _R4 :?a is NULLÞR4Þ ¼
The above examples illustrate that our proposed semantics eval provides the same solutions as the mapping-based
semantics under the interpretation function k. In the following, we prove that the relational algebra based semantics eval
is equivalent to the mapping-based semantics s � t defined in [39] under the interpretation function k.

Theorem 4.18. Given a SPARQL query sparql 2 Q and an RDF graph G, eval is equivalent to s � t under the interpretation k, i.e.
kðevalðsparql;GÞÞ � ssparqltG.

The proof of Theorem 4.18 is available in [15].
The presented relational algebra based semantics of SPARQL provides an important bridge between Semantic Web and

relational databases and serves as the foundation for SPARQL query processing using a relational database query engine.

5. Semantics preserving SPARQL-to-SQL translation

In this section, we define our SPARQL-to-SQL query translation for an RDBMS-based RDF store and prove that the trans-
lation is semantics preserving with respect to the relational algebra based semantics of SPARQL.

In order to support a generic translation of SPARQL queries into equivalent SQL queries, we need a generic representation
for an RDBMS-based RDF store scheme, in which the following information will be modeled: (1) which relation is used to
store RDF triples that can potentially match a triple pattern, and (2) which relational attributes of the relation are used to
store the components (subjects, predicates, and objects) of triples. To capture this information, we formalize an RDBMS-
based RDF store scheme as the following two RDF-to-Relational mappings a and b. In this work, we study the set of schemes
S for which both a and b are many-to-one mappings.

Definition 5.1 (Mapping a). Given a set of all possible triple patterns TP ¼ ðIVLÞ � ðIVÞ � ðIVLÞ and a set of relations REL in an
RDBMS-based RDF store, a mapping a is a many-to-one mapping a : TP ! REL, if given a triple pattern tp 2 TP, aðtpÞ is a
relation in which all the triples that may match tp are stored.

Definition 5.2 (Mapping b). Given a set of all possible triple patterns TP ¼ ðIVLÞ � ðIVÞ � ðIVLÞ, a set POS ¼ fsub; pre; objg, and
a set of relational attributes ATR in an RDBMS-based RDF store, a mapping b is a many-to-one mapping b : TP � POS! ATR, if
given a triple pattern tp 2 TP and a position pos 2 POS, bðtp; posÞ is a relational attribute whose value may match tp at posi-
tion pos.

An example of mappings a and b for different RDBMS-based RDF store schemes is presented in the following.

Example 5.3 (Mappings a and b). First, consider an RDBMS-based RDF store that employs a single relation Triple(s,p,o) to
store RDF triples. For the RDF graph G in Fig. 2, the relation is as follows:
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In this case, for any triple pattern tp, aðtpÞ ¼ Triple, bðtp; subÞ ¼ s, bðtp; preÞ ¼ p, and bðtp; objÞ ¼ o.
Second, consider an RDBMS-based RDF store that employs relation Triple(s,p,o), as well as so called property relations

Ppi
ðs; p; oÞ, where pi is a particular predicate (property). Each relation Ppi

is the result of partitioning relation Triple based on a
predicate value pi, e.g.,
and similarly for Pweb and Pcell.
In this case, a and b can be calculated as follows. For any triple pattern tp, if tp:pp R V , then aðtpÞ ¼ Ptp:pp, otherwise

aðtpÞ ¼ Triple; bðtp; subÞ ¼ s, bðtp; preÞ ¼ p, and bðtp; objÞ ¼ o.
Finally, consider an RDBMS-based RDF store that employs relation Triple(s,p,o), property relations Ppi

ðs; p; oÞ, as well as so
called subject relations Ssj and object relations Ook , where sj (ok) is a particular subject (object). Each relation Ssj (Ook ) is the
result of partitioning relation Triple based on a subject (object) value sj (ok), e.g.,
and so forth.
In this case, a and b can be calculated as follows. For any triple pattern tp, if tp:sp R V , then aðtpÞ ¼ Ptp:sp, otherwise if

tp:op R V , then aðtpÞ ¼ Ptp:op, otherwise if tp:pp R V , then aðtpÞ ¼ Ptp:pp, otherwise aðtpÞ ¼ Triple; bðtp; subÞ ¼ s,
bðtp; preÞ ¼ p, and bðtp; objÞ ¼ o.

The two mappings provide a foundation for a schema-independent SPARQL-to-SQL translation, such that the relational
schema design, which concerns about a and b, is fully separated from the translation procedure which is parameterized
by a and b. We check the relational database schemas of several existing RDF stores, including Jena [63,62], Sesame [9],
3store [27,28], KAON [54], RStar [35], OpenLink Virtuoso [22], DLDB [38], RDFSuite [3,52], DBOWL [37], PARKA [50], RDFProv
[12], and RDFBroker [48], and confirm that a and b can be derived for all of them. To achieve this, there are three minor issues
that we should address as described in the following.

First, many of the existing RDF stores employ normalized database schemas. For example, one relation Triple(s,p,o) can be
used to store all triples, however URIs and literals in this relation are substituted with integer IDs. The mappings from IDs to
URIs and literals are stored in two other relations. This design facilitates faster indexes on numeric values, however the
maintenance of these mappings, as well as query processing in such a setting, are expensive. As a result, some of the systems
switch to denormalized schemas, e.g., Jena1 uses a normalized schema, while Jena2 employs a denormalized schema [63].
Our mappings a and b work for denormalized database schemas naturally; to deal with normalized schemas, we propose to
create a denormalized view of a database and derive a and b with respect to this view. For example, given relation
Triple(s,p,o) and two relations with ID-to-URI and ID-to-literal mappings, one can create a view TripleView(s,p,o) that joins
the available relations to substitute IDs with actual URIs and literals. Creating such a denormalized database view is quite
simple and enables a and b to encode schemas of the following RDF stores: Jena, Sesame, 3store, KAON, RStar, OpenLink
Virtuoso, DBOWL, and the schema-oblivious version of RDFProv.

Second, to support some other RDF stores, b should be a partial mapping. For example, property relations of the form
Ppi
ðs; p; oÞ, where pi is a particular predicate (property), are usually simplified as Ppi

ðs; oÞ, because the relation name itself en-
codes the name of the predicate pi and attribute p, which always stores the value of pi, can be dropped. Therefore, b may be
undefined for the predicate position pre, i.e. bðtp; preÞ ¼ undef . In this work, our translation is defined for the total mappings
to keep the presentation simple. However, it is quite straightforward to adapt the translation to the partial mappings by sim-
ply ignoring undefined values in SQL projection lists and join/selection conditions.
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Finally, in some RDF stores, such as DLDB, RDFSuite, PARKA, and RDFBroker, the RDF-to-Relational mappings should be
many-to-many mappings. For example, to retrieve all triples from the above RDF stores, one needs to select all triples from
all property relations and union them. Therefore, in this case, a is a many-to-many mapping. To avoid many-to-many map-
pings, one can create a view, e.g., TripleView(s,p,o), that stores all triples in the system and thus, always derive a and b as
many-to-one mappings, since this view alone can answer any query without the need to access multiple relations for some
queries. A more efficient solution based on the many-to-many versions of a and b exists; we leave out such details for the
simplicity of presentation.

In addition to mappings a and b, our translation uses five auxiliary functions. The first three functions are (1) a function
alias that generates a unique alias for a relation, (2) a function terms that returns a set of all the terms in a graph pattern, such
that each term is in IVL, and (3) a function name that, given a term in IVL, generates a unique name, such that the generated
name conforms to the SQL syntax for relational attribute names (e.g., SPARQL variables can be ‘‘renamed” by simply remov-
ing initial ‘?’ or ’$’). The other two functions are (4) genCond-SQL and (5) genPR-SQL which are similar to the previously de-
fined genCond and genPR, but generate expressions in SQL syntax.

Functions genCond-SQL and genPR-SQL are defined in Fig. 6. Function genCond-SQL, given a triple pattern tp and a mapping
b, generates an SQL boolean expression which is evaluated to true if and only if tp matches a tuple represented by relational
attributes bðtp; subÞ, bðtp; preÞ, and bðtp; objÞ. The boolean expression ensures that if tp:sp is not a variable (a variable can
match any RDF term), it must be true that bðtp; subÞ ¼ ‘tp:sp’; similar conditions are introduced for tp:pp and tp:op. Also, if
tp:sp ¼ tp:pp, then for tp match the tuple, it must be true that bðtp; subÞ ¼ bðtp; preÞ; similarly for the cases when
tp:sp ¼ tp:op and tp:op ¼ tp:pp.

Example 5.4 (Function genCond-SQL). Given triple patterns tp1 ¼ ð?a; email; ?eÞ and tp2 ¼ ð?a; email; ?aÞ and mapping b
defined as bðtp; subÞ ¼ s, bðtp; preÞ ¼ p, and bðtp; objÞ ¼ o for any triple pattern tp, genCond-SQL generates the following
conditions for tp1 and tp2 to match a tuple represented by (bðtp; subÞ, bðtp; preÞ, bðtp; objÞ):
Please
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genCond-SQLðtp1; bÞ ¼ \True And bðtp1;preÞ ¼ ‘tp1:pp’" ¼ \True And p ¼ ‘email’":
genCond-SQLðtp2; bÞ ¼ \True And bðtp2;preÞ ¼ ‘tp2:pp’ And bðtp2; subÞ ¼ bðtp2; objÞ"

¼ \True And p ¼ ‘email’ And s ¼ o":
Function genPR-SQL, given a triple pattern tp, a mapping b, and a function name, generates an SQL expression which can
be used to project only those relational attributes that correspond to distinct tp:sp, tp:pp, and tp:op and rename the pro-
jected attributes as bðtp; subÞ ! nameðtp:spÞ, bðtp; preÞ ! nameðtp:ppÞ, and bðtp; objÞ ! nameðtp:opÞ. bðtp; subÞ is always
projected and renamed into nameðtp:spÞ, bðtp; preÞ is projected and renamed into nameðtp:ppÞ if tp:pp–tp:sp, and bðtp; preÞ
is projected and renamed into nameðtp:opÞ if tp:op–tp:sp and tp:op–tp:pp. Later, we use this function to generate the pro-
ject-and-rename attribute list of a relation aðtpÞ, where aðtpÞ stores all the tuples that may match tp. This ensures that, after
projection and renaming, the schema of the resulting relation does not have duplicate attribute names.
Fig. 6. Functions genCond-SQL and genPR-SQL.
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Example 5.5 (Function genPR-SQL). Given triple patterns tp1 ¼ ð?a; email; ?eÞ and tp2 ¼ ð?a; email; ?aÞ, mapping b defined as
bðtp; subÞ ¼ s, bðtp; preÞ ¼ p, and bðtp; objÞ ¼ o for any triple pattern tp, and function name (e.g., nameð?aÞ ¼ a, nameð?eÞ ¼ e,
and nameðemailÞ ¼ email), genPR-SQL generates the following SQL strings:
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genPR-SQLðtp1; b;nameÞ ¼ \bðtp1; subÞ As nameðtp1:spÞ;bðtp1;preÞ As nameðtp1:ppÞ;
bðtp1; objÞ As nameðtp1:opÞ"

¼ \s As a;p As email;o As e":

genPR-SQLðtp2; b;nameÞ ¼ \bðtp2; subÞ As nameðtp2:spÞ;bðtp2;preÞ As nameðtp2:ppÞ"
¼ \s As a;p As email":
In the rest of the examples in this section, we assume that for any triple pattern tp, aðtpÞ ¼ Triple, bðtp; subÞ ¼ s,
bðtp; preÞ ¼ p, and bðtp; objÞ ¼ o; function name, given a variable ?v 2 V or a URI uri, returns strings nameð?vÞ ¼ v and
nameðuriÞ ¼ uri that conform to the SQL syntax for relational attribute names. In addition, for brevity, all SQL boolean
expressions of the form ‘‘True And subexpression” are simplified as ‘‘subexpression”.

We define the SPARQL-to-SQL translation as a function trans, which takes a graph pattern expression or a SPARQL query,
an RDBMS-based RDF store scheme represented by a and b, and returns an SQL query. The computation of trans is defined in
Fig. 7 and is explained in the following.

Rule 13 defines the translation of a triple pattern tp into SQL over an RDBMS-based RDF store represented by a and
b. The resulting SQL query retrieves tuples of the form (bðtp; subÞ, bðtp; preÞ, bðtp; objÞ) from relation aðtpÞ, where each
matching tuple must satisfy the condition generated by genCond-SQLðtp; bÞ in the SQL Where clause. The relational
attributes are projected and renamed using the projection list generated by genPR-SQLðtp; b;nameÞ in the SQL Select

clause.

Example 5.6 (Rule 13: transðtp;a; bÞ). The translation of two sample triple patterns into SQL is as follows:
transðð?a; email; ?eÞ;a;bÞ ¼ Select Distinct s As a; p As email; o As e

From Triple Where p ¼ ‘email’
transðð?a;web; ?wÞ;a; bÞ ¼ Select Distinct s As a; p As web; o As w

From Triple Where p ¼ ‘web’
Rule 14 defines the translation of the AND of two graph patterns gp1 and gp2 as the inner join of the relations that cor-
respond to graph pattern translations transðgp1;a; bÞ and ransðgp2;a; bÞ and are assigned aliases r1 and r2, respectively. The
join condition ensures that common attributes r1:nameðcÞ and r2:nameðcÞ are equal or one or both of them are NULLs, for
each c 2 ðtermsðgp1Þ \ termsðgp2ÞÞ; if there are no common attributes, the condition is ‘‘True”, resulting in the cross-prod-
uct of r1 and r2. The relational attributes of the join resulting relation are projected as follows: (1) unique attributes of both
relations are projected per se and (2) common attributes are projected as Coalesce(r1:nameðcÞ, r2:nameðcÞ) As nameðcÞ.
The SQL construct Coalesce, similar to the y operator, returns the value of r1:nameðcÞ, if it is non-NULL, and the value of
r2:nameðcÞ, otherwise. Therefore, the redundant attributes are combined into one single attribute that is renamed into
nameðcÞ.

Example 5.7 (Rule 14: transðgp1 AND gp2;a; bÞ). Given triple patterns tp1 ¼ ð?a; email; ?eÞ and tp2 ¼ ð?a;web; ?wÞ, the
translation of the graph pattern gp ¼ ðtp1 AND tp2Þ into SQL is as follows:
q1 ¼ transðð?a; email; ?eÞ;a;bÞ ¼ Select Distinct s As a; p As email; o As e

From Triple Where p ¼ ‘email’
q2 ¼ transðð?a;web; ?wÞ;a; bÞ ¼ Select Distinct s As a;p As web;o As w

From Triple Where p ¼ ‘web’
transðgp;a;bÞ ¼ Select Distinct email; e; web; w; Coalesceðr1:a;r2:aÞ As a From ðq1Þ r1

Inner Join ðq2Þ r2 On ðr1:a ¼ r2:a Or r1:a Is Null Or r2:a Is NullÞ
Rule 15 defines the translation of the OPT of two graph patterns gp1 and gp2 as the left outer join of the relations that
correspond to graph pattern translations transðgp1;a; bÞ and transðgp2;a; bÞ and are assigned aliases r1 and r2, respectively.
The join condition in the On clause and the projection in the Select clause are analogous to the previous rule. The only dif-
ference between the translations of AND and OPT operators is the use of inner join and left outer join, respectively.

Example 5.8 (Rule 15: transðgp1 OPT gp2;a; bÞ). Given triple patterns tp1 ¼ ð?a; email; ?eÞ and tp2 ¼ ð?a;web; ?wÞ, the
translation of the graph pattern gp ¼ ðtp1 OPT tp2Þ into SQL is as follows:
q1 ¼ transðð?a; email; ?eÞ;a; bÞ ¼ Select Distinct s As a; p As email; o As e

From Triple Where p ¼ ‘email’
cite this article in press as: A. Chebotko et al., Semantics preserving SPARQL-to-SQL translation, Data Knowl. Eng. (2009),
.1016/j.datak.2009.04.001



Fig. 7. SPARQL-to-SQL translation.

18 A. Chebotko et al. / Data & Knowledge Engineering xxx (2009) xxx–xxx

ARTICLE IN PRESS

Please cite this article in press as: A. Chebotko et al., Semantics preserving SPARQL-to-SQL translation, Data Knowl. Eng. (2009),
doi:10.1016/j.datak.2009.04.001



A. Chebotko et al. / Data & Knowledge Engineering xxx (2009) xxx–xxx 19

ARTICLE IN PRESS

Please
doi:10
q2 ¼ transðð?a;web; ?wÞ;a;bÞ ¼ Select Distinct s As a;p As web; o As w

From Triple Where p ¼ ‘web’
transðgp;a; bÞ ¼ Select Distinct email; e; web; w; Coalesceðr1:a;r2:aÞ As a

From ðq1Þ r1 Left Outer Join ðq2Þ r2
On ðr1:a ¼ r2:a Or r1:a Is Null Or r2:a Is NullÞ
Rule 16 defines the translation of the UNION of two graph patterns gp1 and gp2 as the SQL Union of two relations repre-
sented by the two SQL statements. The first statement left outer joins relations r1 ¼ transðgp1;a; bÞ and r2 ¼ transðgp2;a; bÞ
on the false condition, resulting in a relation with the tuples of r1 NULL-padded to schema nðr1Þ [ nðr2Þ. Similarly, the second
statement left outer joins relations r3 ¼ transðgp2;a; bÞ and r4 ¼ transðgp1;a; bÞ on the false condition, resulting in a relation
with the tuples of r3 NULL-padded to schema nðr3Þ [ nðr4Þ. Both statements project the relational attributes in the same or-
der, such that the first projected attribute in the first statement is the same as the first projected attribute in the second
statement and so forth. In particular, unique attributes of transðgp1;a; bÞ, which correspond to elements of ordered set
ðtermsðgp1Þ � termsðgp2ÞÞ, are projected at first; unique attributes of transðgp2;a; bÞ, which correspond to elements of ordered
set ðtermsðgp2Þ � termsðgp1ÞÞ, are projected at second; and common attributes of transðgp1;a; bÞ and transðgp2;a; bÞ, which
correspond to elements of ordered set ðtermsðgp1Þ \ termsðgp2ÞÞ, are projected at last.

Example 5.9 (Rule 16: transðgp1 UNION gp2;a; bÞ). Given triple patterns tp1 ¼ ð?a; email; ?eÞ and tp2 ¼ ð?a;web; ?wÞ, the
translation of the graph pattern gp ¼ ðtp1 UNION tp2Þ into SQL is as follows:
q1 ¼ transðð?a; email; ?eÞ;a;bÞ ¼ Select Distinct s As a; p As email; o As e

From Triple Where p ¼ ‘email’
q2 ¼ transðð?a;web; ?wÞ;a; bÞ ¼ Select Distinct s As a;p As web; o As w

From Triple Where p ¼ ‘web’
transðgp;a;bÞ ¼ Select Distinct email; e; web; w; r1:a As a

From ðq1Þ r1 Left Outer Join ðq2Þ r2 On ðFalseÞ
Union

Select Distinct email; e; web; w; r3:a As a

From ðq2Þ r3 Left Outer Join ðq1Þ r4 On ðFalseÞ
Rule 17 defines the translation of the FILTER expression expr for graph pattern gp as the selection over relation transðgpÞ
based on condition transexprðexprÞ. The transexpr translation procedure is described in Fig. 7.

Example 5.10 (Rule 17: transðgp FILTER expr;a; bÞ). Given the graph pattern gp ¼ ð?a; email; ?eÞ OPT ð?a;web; ?wÞ and the
boolean expression expr ¼ :boundð?wÞ, the translation of the graph pattern gp FILTER expr into SQL is as follows. Let
transðgp;a; bÞ ¼ q (see Example 5.8), then
transððgp FILTER exprÞ;a;bÞ ¼ Select � From ðqÞ r Where Not ðw Is Not NullÞ
Finally, Rule 18 defines the translation of a SPARQL query with graph pattern gp and projection list v1; v2; . . . ; vn as the
projection of relational attributes nameðv1Þ;nameðv2Þ; . . . ; nameðvnÞ from the relation that corresponds to transðgp;a; bÞ.

Example 5.11 (Rule 18: transðSELECT v1; v2; . . . ; vnð Þ WHERE ðgpÞ;a; bÞ). Given the graph pattern gp ¼ ð?a; email; ?eÞ
OPT ð?a;web; ?wÞ, the translation of the SPARQL query SELECT ?a; ?e; ?w WHEREðgpÞ into SQL is as follows. Let
transðgp;a; bÞ ¼ q (see Example 5.8), then
transððSELECT ?a; ?e; ?w WHERE ðgpÞÞ;a;bÞ ¼ Select a;e;w From ðqÞ r
Additionally, we present the translation of several SPARQL queries whose evaluation is described in Example 4.17.

Example 5.12 (SPARQL-to-SQL translation). As before, we assume an RDBMS-based RDF store with a single relation
Triple(s,p,o) that stores all the RDF triples of the RDF graph described in Fig. 2. Therefore, for any triple pattern tp,
aðtpÞ ¼ Triple, bðtp; subÞ ¼ s, bðtp; preÞ ¼ p, and bðtp; objÞ ¼ o.

The following are sample SPARQL queries and their SQL counterparts:

Q1: SELECT ?a, ?n, ?e, ?w WHERE (((?a, name, ?n) OPT (?a, email, ?e)) OPT (?a, web, ?w)).
q1 ¼trans((?a, name, ?n), a; bÞ ¼
Select Distinct s As a, p As name, o As n From Triple Where p=‘name’

q2 ¼trans((?a, email, ?e), a; bÞ ¼
Select Distinct s As a, p As email, o As e From Triple Where p=‘email’

q3 ¼trans((?a, web, ?w), a; bÞ ¼
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Select Distinct s As a, p As web, o As w From Triple Where p ¼‘web’
q4 ¼trans(((?a, name, ?n) OPT (?a, email, ?e)), a; bÞ ¼
Select Distinct name,n,email,e,Coalesce(r1.a,r2.a) As a

From (q1) r1 Left Outer Join (q2) r2 On (r1.a=r2.a Or r1.a Is Null Or r2.a Is Null)

transðQ 1;a; bÞ ¼Select Distinct a,n,e,w From (

Select Distinct name,n,email,e,web,w,Coalesce(r3.a,r4.a) As a

From (q4) r3 Left Outer Join (q3) r4 On (r3.a=r4.a Or r3.a Is Null Or r4.a Is Null)) r5
Q2: SELECT ?a, ?n, ?ew WHERE (((?a, name, ?n) OPT (?a, email, ?ew)) OPT (?a, web, ?ew)).

q1 ¼trans((?a, name, ?n), a; bÞ ¼
Select Distinct s As a, p As name, o As n From Triple Where p=‘name’

q2 ¼trans((?a, email, ?ew), a; bÞ ¼
Select Distinct s As a,p As email,o As ew From Triple Where p =‘email’

q3 ¼trans((?a, web, ?ew), a; bÞ ¼
Select Distinct s As a, p As web, o As ew From Triple Where p =‘web’

q4 ¼trans(((?a, name, ?n) OPT (?a, email, ?ew)), a; bÞ ¼
Select Distinct name,n,email,ew,Coalesce(r1.a,r2.a) As a

From (q1) r1 Left Outer Join (q2) r2 On (r1.a¼r2.a Or r1.a Is Null Or r2.a Is Null)

transðQ2;a; bÞ ¼Select Distinct a,n,ew From (

Select Distinct name,n,email,web,Coalesce(r3.a,r4.a) As a, Coalesce(r3.ew,r4.ew) As ew

From (q4) r3 Left Outer Join (q3) r4 On ((r3.a¼r4.a Or r3.a Is Null Or r4.a Is Null)

And (r3.ew=r4.ew Or r3.ew Is Null Or r4.ew Is Null))) r5
Q3: SELECT ?a, ?n, ?e, ?w WHERE ((?a, name, ?n) OPT ((?a, email, ?e) OPT (?a, web, ?w))).

q1 ¼trans((?a, name, ?n), a; bÞ ¼
Select Distinct s As a, p As name, o As n From Triple Where p=‘name’

q2 ¼trans((?a, email, ?e), a; bÞ ¼
Select Distinct s As a, p As email, o As e From Triple Where p=‘email’

q3 ¼trans((?a, web, ?w), a; bÞ ¼
Select Distinct s As a, p As web, o As w From Triple Where p =‘web’

q4 ¼trans(((?a, email, ?e) OPT (?a, web, ?w )), a; bÞ ¼
Select Distinct email,e,web,w,Coalesce(r1.a,r2.a) As a

From (q2) r1 Left Outer Join (q3) r2 On (r1.a¼r2.a Or r1.a Is Null Or r2.a Is Null)

transðQ3;a; bÞ ¼Select Distinct a,n,e,w From (

Select Distinct name,n,email,e,web,w,Coalesce(r3.a,r4.a) As a

From (q1) r3 Left Outer Join (q4) r4 On (r3.a¼r4.a Or r3.a Is Null Or r4.a Is Null)) r5
Q4: SELECT ?x, ?y, ?z WHERE ((?x, name, paul) OPT ((?y, name, george) OPT (?x, email, ?z))).

q1 ¼trans((?x, name, paul), a; bÞ ¼
Select Distinct s As x, p As name, o As paul From Triple Where p=‘name’ And o=‘paul’

q2 ¼trans((?y, name, george),a; bÞ ¼
Select Distinct s As y, p As name, o As george From Triple Where p=‘name’ And o=‘george’

q3 ¼trans((?x, email, ?z),a; bÞ ¼
Select Distinct s As x, p As email, o As z From Triple Where p=‘email’

q4 ¼trans(((?y, name, george) OPT (?x, email, ?z )),a; bÞ ¼
Select Distinct y,name,george,x,email,z From (q2) r1 Left Outer Join (q3) r2 On (True)

transðQ4;a; bÞ ¼Select Distinct x,y,z From (

Select Distinct paul,y,george,email,z,Coalesce(r3.x,r4.x) As x,

Coalesce(r3.name,r4.name) As name

From (q1) r3 Left Outer Join (q4) r4 On ((r3.x=r4.x Or r3.x Is Null Or r4.x Is Null)

And (r3.name=r4.name Or r3.name Is Null Or r4.name Is Null))) r5
Q5: SELECT ?a, ?n, ?p WHERE ((?a, name, ?n) AND ((?a, phone, ?p) UNION (?a, cell, ?p))).

q1 ¼trans((?a, name, ?n),a; bÞ ¼
Select Distinct s As a, p As name, o As n From Triple Where p=‘name’

q2 ¼trans((?a, phone, ?p),a; bÞ ¼
Select Distinct s As a, p As phone, o As p From Triple Where p=‘phone’

q3 ¼trans((?a, cell, ?p),a; bÞ ¼
Select Distinct s As a, p As cell, o As p From Triple Where p=‘cell’

q4 ¼trans(((?a, phone, ?p) UNION (?a, cell, ?p )),a; bÞ ¼
Select phone,cell, r1.a As a, r1.p As p From (q2) r1 Left Outer Join (q3) r2 On (False)
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Select phone,cell, r3.a As a, r3.p As p From (q3) r3 Left Outer Join (q2) r4 On (False)

transðQ 5;a; bÞ ¼Select Distinct a,n,p From (

Select Distinct name,n,phone,p,cell,Coalesce(r5.a,r6.a) As a From (q1) r5

Inner Join (q4) r6 On (r5.a=r6.a Or r5.a Is Null Or r6.a Is Null)) r7

In the rest of this section, we prove that the SPARQL-to-SQL translation trans is semantics preserving with respect to the
relational algebra based semantics of SPARQL, as well as the mapping-based semantics of SPARQL. To achieve this, we first
define what it means for an RDBMS-based RDF store DB to store an RDF graph G. Second, we define the semantics of trans-
generated SQL statements as a function exec. Finally, we define an interpretation function / to relate solutions of eval and
exec, since eval and exec may produce relations with different relational attribute names due to the SQL naming constraints.

Definition 5.13 (Relational storage of an RDF graph). Given an RDBMS-based RDF store DB, whose scheme is represented by
mappings a and b, and an RDF graph G, DB is a relational storage of G, denoted as DBG, if for any triple pattern tp, tp matches
the same subsets of triples in G and in DB, i.e.4
4 Not
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8tp; fðt:s; t:p; t:oÞ j t 2 G ^ genCondðtpÞg � fðt:s; t:p; t:oÞ j t 2 pbðtp;subÞ;bðtp;preÞ;bðtp;objÞðaðtpÞÞ ^ genCondðtpÞg
Let exec denote a function that defines the relational algebra based semantics of trans-generated SQL statements. exec is
formally defined in [15]. To relate a solution produced by exec, e.g., R1 ¼ execðtransðsparql;a; bÞ;DBGÞ, to a solution produced
by eval, e.g., R2 ¼ evalðsparql;GÞ, we define an interpretation function / as follows.

Definition 5.14 (Interpretation function /). Given a relation R1 with schema nðR1Þ, interpretation function / returns the
relation R2, that is derived from R1 by renaming its relational attributes, such that 8x 2 nðR1Þ; name�1ðxÞ 2 nðR2Þ and
8y 2 nðR2Þ; nameðyÞ 2 nðR1Þ, where name is the renaming function defined for translation trans and name�1 is the inverse
function of name.

In other words, / renames each attribute x of an input relation into name�1ðxÞ, while leaving attribute values untouched,
and returns this relation as a result.

We prove that the SPARQL-to-SQL translation trans is semantics preserving with respect to the relational algebra based
semantics of SPARQL and the mapping-based semantics of SPARQL in the following theorem and corollary.

Theorem 5.15. Given a SPARQL query sparql 2 Q, an RDF graph G, and a relational storage DBG of G, whose scheme is represented
by mappings a and b, the SPARQL-to-SQL translation trans is semantics preserving with respect to the relational algebra based
semantics of SPARQL under the interpretation /, i.e. 8sparql 2 Q, /ðexecðtransðsparql;a; bÞ;DBGÞÞ � evalðsparql;GÞ.

The proof of Theorem 5.15 is available in [15].

Corollary 5.16. Given a SPARQL query sparql 2 Q, an RDF graph G, and a relational storage DBG of G, whose scheme is represented
by mappings a and b, the SPARQL-to-SQL translation trans is semantics preserving with respect to the mapping-based semantics of
SPARQL under the interpretations k and /, i.e. 8sparql 2 Q, kð/ðexecðtransðsparql;a; bÞ;DBGÞÞÞ � ssparqltG.

The proof of Corollary 5.16 directly follows from Theorems 4.18 and 5.15.

6. Simplification of the SPARQL-to-SQL translation

Our proposed SPARQL-to-SQL translation closely resembles the definition rules of the relational algebra based semantics
of SPARQL, which makes it straightforward to show that the translation is correct or semantics preserving. However, while
the semantics definition does not concern efficiency, the translation does. In this section, we present our research results on
the simplification of the original SPARQL-to-SQL translation trans to generate simpler and more efficient SQL queries.

The following are six important simplifications that we pursue.

6.1. Simplification 1

Our first observation is that, in trans-generated SQL statements, the projection of relational attributes that correspond to
URIs and literals in graph patterns is frequently redundant, since such attributes do not affect the SQL evaluation. In partic-
ular, such attributes, if any, are first projected in Rule 13. In Rules 14 and 15, these attributes are also projected, however
they do not affect the join conditions, i.e. the expressions with such attributes always evaluate to true. In Rules 16 and
17, the attributes are projected, but do not participate in the join and selection conditions, respectively. Finally, in Rule
18, such attributes are eliminated from the final query solution. Projecting unnecessary URI and literal attributes in interme-
diate relations brings extra space and computation overhead. Therefore, our first simplification is to project only those
e that although aand b identify a relation and its attributes, the relational instance is a part of DB which is implicit in this equation.
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relational attributes that store variable bindings; if a relation has no such attributes, it is sufficient and necessary to project
any one of the available attributes, since the SQL Select projection list must contain at least one attribute. The application
of this simplification to the projection lists of Rules 13–16 (Rules 17 and 18 stay the same) is straightforward. However, since
the modified trans does not project all the attributes that correspond to graph pattern terms, the terms function must be
redefined to return a correct set of elements. A new function terms must return a set of terms in a graph pattern gp, such
that for all x 2 termsðgpÞ, nameðxÞ 2 nðtransðgp;a; bÞÞ and for all y 2 nðtransðgp;a; bÞÞ, there exist x 2 termsðgpÞ and
nameðxÞ ¼ y. This new function depends on the translation itself, i.e. the elements of termsðgpÞ correspond to the elements
of nðtransðgp;a; bÞÞ, which ensures that the modification of projection lists in trans implicitly ‘‘modifies” the result of terms to
contain only those elements x 2 termsðgpÞ whose corresponding relational attributes have been projected
nameðxÞ 2 nðtransðgp;a; bÞÞ.

6.2. Simplification 2

Our second observation is related to the projection expression Coalesce(r1:nameðcÞ, r2:nameðcÞ) As nameðcÞ in Rules 14
and 15, where r1 corresponds to ðtransðgp1;a; bÞÞ, r2 corresponds to ðtransðgp2;a; bÞÞ, and c 2 ðtermsðgp1Þ \ termsðgp2ÞÞ. Note
that, if ðtransðgp1;a; bÞÞ contains no left outer joins, r1:nameðcÞ cannot have a NULL value and therefore, is always projected
by the Coalesce function. Therefore, the second simplification is to replace the original expression with r1:nameðcÞ As
nameðcÞ when ðtransðgp1;a; bÞÞ contains no left outer joins.

6.3. Simplification 3

The third simplification is related to the join condition(r1:nameðcÞ=r2:nameðcÞOr r1:nameðcÞIs Null Or r2:nameðcÞIs
Null) in Rules 14 and 15, where r1 corresponds to ðtransðgp1;a; bÞÞ, r2 corresponds to ðtransðgp2;a; bÞÞ, and
c 2 ðtermsðgp1Þ \ termsðgp2ÞÞ. This expression can sometimes be replaced with a simpler one as follows:

(i) True, if c is a URI or a literal. A URI or literal attribute nameðcÞ can be either ‘‘unbound” (NULL) or ‘‘bound” to itself
(to c). Therefore, if r1:nameðcÞ or r2:nameðcÞ is NULL, then the original expression is true; if both r1:nameðcÞ and
r2:nameðcÞ are not NULLs, then r1:nameðcÞ ¼ c, r2:nameðcÞ ¼ c, and the original expression is true. Since the expression
always evaluates to true, it can be replaced with True.

(ii) (r1:nameðcÞ ¼ r2:nameðcÞ Or r2:nameðcÞ Is Null), if transðgp1;a; bÞ contains no left outer joins.
(iii) (r1:nameðcÞ ¼ r2:nameðcÞ Or r1:nameðcÞ Is Null), if transðgp2;a; bÞ contains no left outer joins.
(iv) (r1:nameðcÞ ¼ r2:nameðcÞ), if both transðgp1;a; bÞ and transðgp2;a; bÞ contain no left outer joins.

Expressions in (ii), (iii), and (iv) are valid simplifications that are based on the following observation. When the corre-
sponding graph pattern translation (e.g., transðgp1;a; bÞ) contains no left outer joins, its resulting relation cannot have NULL
values (e.g., relation r1), and therefore, the Is Null check (e.g., r1:nameðcÞ Is Null) always evaluates to false and does not
affect the evaluation of the original expression.

6.4. Simplification 4

The fourth simplification is to rewrite predicates of the form ‘‘True And subexpression” generated in the SQL Where clause
(Rule 13) and in the SQL On clause (Rules 14 and 15) as ‘‘subexpression”. Although this tautology elimination does not im-
prove query evaluation performance substantially, it does enhance the readability of the trans-generated SQL statements.

6.5. Simplification 5

The fifth simplification is for the translation of SPARQL UNION in Rule 16. Note that the only purpose of the left outer joins
in Rule 16 is to extend the relational schemas of nðtransðgp1;a; bÞÞ and nðtransðgp2;a; bÞÞ to schema
nðtransðgp1;a; bÞÞ [ nðtransðgp2;a; bÞÞ. When the two relations ðtransðgp1;a; bÞÞ and ðtransðgp2;a; bÞÞ have identical schemas,
the schema extension is not needed, since nðtransðgp1;a; bÞÞ � nðtransðgp2;a; bÞÞ � nðtransðgp1;a; bÞÞ [ nðtransðgp2;a; bÞÞ.
Therefore, in Rule 16, left outer joins can be omitted when the relations have identical schemas, but the attribute projection
for both relations should be in the same order to ensure correct result of the SQL Union evaluation.

6.6. Simplification 6

Our last simplification is to push projection in Rule 18 into immediately contained Select subqueries of ðtransðgp;a; bÞÞ,
such that only required variables are projected in the subqueries directly.

The implementation of these simplifications is rather straightforward. Other simplifications are also possible under some
stricter conditions; we leave them for our future work.

We apply our translation with the above simplifications to our sample SPARQL queries in the following example.
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Example 6.1 (SPARQL-to-SQL translation with simplifications). As before, we assume an RDBMS-based RDF store with a single
relation Triple(s,p,o) that stores all the RDF triples of the RDF graph described in Fig. 2. Therefore, for any triple pattern
tp, aðtpÞ ¼ Triple, bðtp; subÞ ¼ s, bðtp; preÞ ¼ p, and bðtp; objÞ ¼ o.

The following are sample SPARQL queries (same as in Example 5.12) and their SQL counterparts:

Q1: SELECT ?a, ?n, ?e, ?w WHERE (((?a, name, ?n) OPT (?a, email, ?e)) OPT (?a, web, ?w)).
q1 ¼trans((?a, name, ?n),a; bÞ ¼ Select Distinct s As a, o As n From Triple Where p=‘name’

q2 ¼trans((?a, email, ?e),a; bÞ ¼ Select Distinct s As a, o As e From Triple Where p=‘email’

q3 ¼trans((?a, web, ?w),a; bÞ ¼ Select Distinct s As a, o As w From Triple Where p=‘web’

q4 ¼trans(((?a, name, ?n) OPT (?a, email, ?e)),a; bÞ ¼
Select Distinct n, e, r1.a As a From (q1) r1 Left Outer Join (q2) r2 On (r1.a= r2.a)

transðQ 1;a; bÞ ¼
Select Distinct Coalesce(r3.a,r4.a) As a, n, e, w

From (q4) r3 Left Outer Join (q3) r4 On (r3.a=r4.a Or r3.a Is Null)
Q2: SELECT ?a, ?n, ?ew WHERE (((?a, name, ?n) OPT (?a, email, ?ew)) OPT (?a, web, ?ew)).

q1 ¼trans((?a, name, ?n),a; bÞ ¼ Select Distinct s As a, o As n From Triple Where p=‘name’

q2 ¼trans((?a, email, ?ew),a; bÞ ¼ Select Distinct s As a, o As ew From Triple Where p=‘email’

q3 ¼trans((?a, web, ?ew),a; bÞ ¼ Select Distinct s As a, o As ew From Triple Where p=‘web’

q4 ¼trans(((?a, name, ?n) OPT (?a, email, ?ew)),a; bÞ ¼
Select Distinct n, ew, r1.a As a From (q1) r1 Left Outer Join (q2) r2 On (r1.a= r2.a)

transðQ 2;a; bÞ ¼
Select Distinct Coalesce(r3.a,r4.a) As a, n, Coalesce(r3.ew,r4.ew) As ew

From (q4) r3 Left Outer Join (q3) r4

On ((r3.a=r4.a Or r3.a Is Null) And (r3.ew =r4.ew Or r3.ew Is Null))
Q3: SELECT ?a, ?n, ?e, ?w WHERE ((?a, name, ?n) OPT ((?a, email, ?e) OPT (?a, web, ?w))).

q1 ¼trans((?a, name, ?n),a; bÞ ¼ Select Distinct s As a, o As n From Triple Where p=‘name’

q2 ¼trans((?a, email, ?e),a; bÞ ¼ Select Distinct s As a, o As e From Triple Where p=‘email’

q3 ¼trans((?a, web, ?w),a; bÞ ¼ Select Distinct s As a, o As w From Triple Where p=‘web’

q4 ¼trans(((?a, email, ?e) OPT (?a, web, ?w )),a; bÞ ¼
Select Distinct e, w, r1.a As a From (q2) r1 Left Outer Join (q3) r2 On (r1.a= r2.a)

transðQ 3;a; bÞ ¼
Select Distinct r3.a As a, n, e, w

From (q1) r3 Left Outer Join (q4) r4 On (r3.a=r4.a Or r4.a Is Null)
Q4: SELECT ?x, ?y, ?z WHERE ((?x, name, paul) OPT ((?y, name, george) OPT (?x, email, ?z))).

q1 ¼trans((?x, name, paul),a; bÞ ¼Select Distinct s As x From Triple Where p=‘name’ And o=‘paul’

q2 ¼trans((?y, name, george),a; bÞ ¼
Select Distinct s As y From Triple Where p=‘name’ And o=‘george’

q3 ¼trans((?x, email, ?z),a; bÞ ¼ Select Distinct s As x, o As z From Triple Where p=‘email’

q4 ¼trans(((?y, name, george) OPT (?x, email, ?z )),a; bÞ ¼
Select Distinct y, x, z From (q2) r1 Left Outer Join (q3) r2 On (True)

transðQ 4;a; bÞ ¼
Select Distinct r3.x As x, y, z

From (q1) r3 Left Outer Join (q4) r4 On (r3.x=r4.x Or r4.x Is Null)
Q5: SELECT ?a, ?n, ?p WHERE ((?a, name, ?n) AND ((?a, phone, ?p) UNION (?a, cell, ?p))).

q1 ¼trans((?a, name, ?n),a; bÞ ¼ Select Distinct s As a, o As n From Triple Where p=‘name’

q2 ¼trans((?a, phone, ?p),a; bÞ ¼ Select Distinct s As a, o As p From Triple Where p=‘phone’

q3 ¼trans((?a, cell, ?p),a; bÞ ¼ Select Distinct s As a, o As p From Triple Where p=‘cell’

q4 ¼trans(((?a, phone, ?p) UNION (?a, cell, ?p )),a; bÞ ¼
Select a, p From (q2) r1 Union Select a, p From (q3) r2

transðQ 5;a; bÞ ¼
Select Distinct r3.a As a, p, n From (q1) r3 Inner Join (q4) r4 On (r3.a=r4.a)

The comparison of the SQL queries generated in this example and the corresponding SQL queries generated in Example
5.12 shows that, with our proposed simplifications, trans generates less verbose and more efficient queries, while providing
the same final result.
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7. Extension of the semantics and translation to support the bag semantics of a SPARQL query solution

Previously, we defined the SPARQL query solution as a set – a set of mappings for the mapping-based representation X
(see Definition 3.5) or a set of tuples for the relational representation R (see Definition 4.1). This complies with the SPARQL
semantics definition by Perez et al. [39,40] and the relational algebra definition by Codd [17,19]. However, the W3C SPARQL
specification [59], although it adopts the ideas of [39,40], generalizes the SPARQL query solution as a sequence of possibly
unordered mappings or a bag of mappings, similarly to SQL’s generalization of a relation with the set semantics into a table
with the bag semantics. In the following, we briefly explain how our defined relational algebra based semantics of SPARQL
and the SPARQL-to-SQL translation can be extended to support the bag semantics of a SPARQL query solution.

The extension is fairly straightforward. All the rules defining the relational algebra based semantics of SPARQL still hold,
except we interpret each relation as a bag of tuples and ensure that all relational operators preserve duplicates. Similarly, all
the rules defining the SPARQL-to-SQL translation still hold, except we eliminate the SQL Distinct construct from the que-
ries in Rules 13, 14, 15, and 18 and substitute the SQL Union construct in Rule 16 with Union All to ensure that duplicate
tuples are preserved.

We show how a sample SPARQL query is evaluated and translated with eval and trans under the bag semantics.

Example 7.1 (eval and trans under the bag semantics). In this example, we use SPARQL query Q5 whose evaluation and
translation under the set semantics were presented in Examples 4.17 and 5.12/6.1, respectively.

The evaluation of Q5 under the bag semantics over the RDF graph G in Fig. 2 is as follows.

Q5: SELECT ?a, ?n, ?p WHERE ((?a, name, ?n) AND ((?a, phone, ?p) UNION (?a, cell, ?p))).
R1 ¼ evalðð?a;name; ?nÞ;GÞ ¼ fðB1;name; paulÞ; ðB2;name; johnÞ; ðB3;name; georgeÞ; ðB4;name; ringoÞg
R2 ¼ evalðð?a; phone; ?pÞ;GÞ ¼ fðB1; phone;111� 1111Þ; ðB4; phone;444� 4444Þg
R3 ¼ evalðð?a; cell; ?pÞ;GÞ ¼ fðB4; phone;444� 4444Þg
R4 ¼ evalðð?a; phone; ?pÞ UNION ð?a; cell; ?pÞ;GÞ ¼ R2 ] R3 ¼
fðB1; phone;111� 1111;NULLÞ; ðB4; phone;444� 4444;NULLÞ; ðB4;NULL;444� 4444; cellÞg
evalðQ5;GÞ ¼ p?a;?n;?pðyðR1 :?a;R4 :?aÞ!?a ðR1fflðR1 :?a¼R4 :?a_R1 :?a is NULL _R4 :?a is NULL ÞR4ÞÞ ¼
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Given an RDBMS-based RDF store scheme, i.e. for any triple pattern tp, aðtpÞ ¼ Triple, bðtp; subÞ ¼ s, bðtp; preÞ ¼ p, and
bðtp; objÞ ¼ o, the translation of Q5 under the bag semantics with the simplifications (see Example 6.1) is as follows.

Q5: SELECT ?a, ?n, ?p WHERE ((?a, name, ?n) AND ((?a, phone, ?p) UNION (?a, cell, ?p))).
q1 ¼ transðð?a;name; ?nÞ;a; bÞ ¼ Select s As a; o As n From Triple Where p ¼ ‘name’
q2 ¼ transðð?a; phone; ?pÞ;a; bÞ ¼ Select s As a; o As p From Triple Where p ¼ ‘phone’
q3 ¼ transðð?a; cell; ?pÞ;a; bÞ ¼ Select s As a; o As p From Triple Where p ¼ ‘cell’
q4 ¼ transððð?a; phone; ?pÞ UNION ð?a; cell; ?pÞÞ;a; bÞ ¼
Select a, p From (q2) r1 Union All Select a, p From (q3) r2

transðQ5;a; bÞ ¼
Select r3.a As a, p, n From (q1) r3 Inner Join (q4) r4 On (r3.a=r4.a)
8. Experimental study

In this section, we present our experimental study with the following two main goals:

(1) Exploring and comparing the performance of queries generated by our generic translation with the performance of
queries generated by schema dependent translations implemented in existing relational RDF stores.

(2) Exploring and comparing the performance of queries generated by our original translation (trans) with the perfor-
mance of queries generated by our simplified translation (further denoted as trans-s).

Towards these goals, we implemented trans and trans-s in C++ and applied them to query translation for RDF stores RDF-
Prov [11,12], Sesame [9], and Jena [63,62] that stored RDF data in a MySQL 5.1 CE RDBMS. In addition, to test our translations
over different relational query optimizers, we ran our test queries over the RDFProv store deployed with both MySQL 5.1
Community Edition and Oracle 9i Enterprise Edition.

The dataset for our experiments was obtained by extending the RDF graph in Fig. 2 to a larger one with 1,000,000 triples
that captured information about persons’ names, emails, phones, cell phones, and webpages. We selected nine SPARQL que-
cite this article in press as: A. Chebotko et al., Semantics preserving SPARQL-to-SQL translation, Data Knowl. Eng. (2009),
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Table 1
Evaluation times of queries Q1–Q9 over RDFProv, Sesame, and Jena (best times for each store are shown in bold).

RDF store/translation/RDBMS Query evaluation time (s)

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

RDFProv/trans/MySQL 14.73 16.63 13.81 0.05 19.92 0.03 0.03 5.89 5.73
RDFProv/trans-s/MySQL 5.233 4.217 4.28 0.02 0.08 0.01 0.01 0.198 0.05
RDFProv/trans/Oracle 16.06 17.05 100.2 0.01 0.01 0.01 0.01 4.04 0.01
RDFProv/trans-s/Oracle 5.05 4.06 8.03 0.01 0.01 0.01 0.01 0.01 0.01

Sesame/Sesame/MySQL 5.07 4.31 4.78 0.08 4.29 0.18 0.17 0.18 0.17
Sesame/trans/MySQL 1371 1380 1178 2.14 1083 1.38 1.27 346.7 651.9
Sesame/trans-s/MySQL 618.1 635 324 1.8 3.39 1.24 1.19 309.2 2.65

Jena/Jena/MySQL 2357 1043 2258 0.36 1064 0.594 0.562 2.859 0.563
Jena/trans/MySQL 117.1 118.6 42.69 0.13 132.4 0.2 0.2 2.825 30.42
Jena/trans-s/MySQL 44.4 44.5 22.2 0.11 0.25 0.16 0.16 2.2 0.22
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ries over this dataset. Queries Q1–Q5 were the ones presented in Examples 4.17, 5.12, and 6.1. Since queries Q1, Q2, Q3, and
Q5 yielded large intermediate and final results (	 25% of the dataset size) and could not benefit from database indexes, we
modified them into queries Q6, Q7, Q8, and Q9, respectively, by replacing the variable ?n with the literal ‘‘george”. Queries
Q6–Q9, as well as Q4, appeared to be much more selective and efficient.

In Table 1, we report the performance of our test queries over the generated dataset stored with RDFProv, Sesame 2.2.3,
and Jena 2.5.7. The experiments were conducted on a PC with 3.00 GHz Intel Core 2 CPU, 4 GB RAM, and 750 GB disk space
running MS Windows XP Professional.

Our system RDFProv used several types of relations to store RDF data, including class and property relations, and provided
RDF-to-Relational mappings a and b that were generated for each query using algorithms described in [11,12]. Additional
RDFProv optimizations for basic graph patterns were not applicable to our test queries and were turned off. Our simplifica-
tions (trans-s) showed to significantly improve query performance for all the queries evaluated over MySQL and queries Q1,
Q2, Q3, and Q8 evaluated over Oracle. Oracle showed better performance than MySQL for most simplified queries (except
Q3) and showed equal performance for some trans and trans-s generated queries (Q4–Q7 and Q9), which could be a result
of more sophisticated query optimization techniques used by this database management system.

Sesame used the normalized database schema with one relation (triples) that stored subjects, predicates, and objects of all
RDF triples, however URIs and literals in this relation were substituted with integer IDs. The mappings from IDs to URIs and
literals were stored in relations uri_values and label_values, respectively. To deal with this schema, we created a denormal-
ized database view that used three inner joins (triples fflsubj¼id uri_values, triples fflpred¼id uri_values, and triples fflobj¼id (uri_val-
ues [ label_values)) to substitute IDs with actual URIs and literals. With such a view, the a and b mappings became very
simple as described in the first case of Example 5.3. Sesame’s native translation showed to be very efficient, however the
system returned incorrect/incomplete results for queries Q2 and Q7. For example, for Q2 in Example 4.17, Sesame returned
incomplete tuple ðB3; george;NULLÞ instead of expected tuple ðB3; george;www:george:eduÞ in the final result. The perfor-
mance of the trans and trans-s generated queries was significantly slower than Sesame’s performance for most queries, since
the queries were evaluated over the view that required three additional joins; nevertheless, trans-s had the best time for Q5.

Jena used the denormalized database schema with one relation that was similar to the denormalized database view for
Sesame. Before evaluating the trans and trans-s generated queries over this store, we had to encode URIs and literals using
Jena’s encoding scheme (e.g., the ‘‘george” literal was encoded as ‘‘Lv:0::george:”). We observed that the trans-s queries out-
performed both trans and Jena’s native translation queries in all the tests. trans showed to be a faster alternative than Jena’s
translation for all the queries except Q9.

With respect to the experimental study goals and based on our empirical data, we conclude:

(1) Our generic translation can serve as a good alternative to existing schema dependent translations to provide better
query performance (as in case of Jena) or ensure query result correctness (as in case of Sesame).

(1) Our proposed simplifications to the translation can significantly improve query performance (in case of both MySQL
and Oracle).
9. Conclusions and future work

In this work, we first formalized the relational algebra based semantics of SPARQL that is very important to bridge the two
worlds of the Semantic Web and relational databases. We proved that our defined semantics is equivalent to the mapping-
based semantics of SPARQL. Second, based on the relational algebra based semantics of SPARQL, we defined the first provably
semantics preserving SPARQL-to-SQL translation with support of SPARQL queries with triple patterns, basic graph patterns,
optional graph patterns, alternative graph patterns, and value constraints. Our translation is generic and can be implemented
in existing relational RDF stores, including Jena, Sesame, 3store, KAON, RStar, OpenLink Virtuoso, DLDB, RDFSuite, DBOWL,
PARKA, RDFProv, and RDFBroker. Such a flexibility was achieved by full separation of the translation from the relational data-
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base schema design. Third, we presented a number of simplifications for the SPARQL-to-SQL translation to generate simpler
and more efficient SQL queries. Fourth, we extended our semantics and translation to support the bag semantics of a SPARQL
query solution. Finally, we conducted the experimental study showing that: (1) our generic translation can serve as a good
alternative to existing schema dependent translations to provide better query performance and/or ensure query result cor-
rectness, and (2) our proposed simplifications to the translation can significantly improve query performance. Our work re-
sulted in the first solution to the problem of SPARQL-to-SQL translation that has been shown to be correct. It can serve as a
reference solution for researchers and developers of relational RDF stores.

We identify the following directions for future work:

� RDFS-aware SPARQL-to-SQL translation will be a natural extension of our research. Since we did not consider RDF Schema
or OWL ontology in the current translation, an interesting direction is to incorporate class taxonomy, property hierarchy,
and other types of ontology-based inference support into the translation. This will enable the support of the backward-
chaining inference inside the relational query engine and will greatly reduce storage requirements by RDF stores with
the forward-chaining inference technique.

� Translation-generated SQL query optimization is another promising direction for future work. In the current work, we
observed that the translation frequently uses SQL features whose evaluation is not yet optimized by a relational database
engine, e.g., multiple coalesce functions in one projection, null-accepting predicates, and outerunion implementations.
Providing native support for these features might result in faster query evaluation.

� New research opportunities, such as integration, reuse, and evaluation of RDF store schemas, automatic checking of query
correctness, and distributed querying of multiple RDF stores, are becoming feasible with the generic and semantics-pre-
serving SPARQL-to-SQL translation. We are interested in exploring some of these important challenges.
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