
Proceedings of DETC’05
2005 ASME Design Engineering Technical Conferences

Long Beach, California, USA, September 24–28, 2005

DRAFT DETC2005-85310

CONCEPTUAL DESIGN KNOWLEDGE MANAGEMENT AND THE SEMANTIC WEB

Joseph B. Kopena Christopher D. Cera William C. Regli ∗

{tjkopena , cera , regli }@cs.drexel.edu
Geometric and Intelligent Computing Laboratory

Department of Computer Science Drexel University
Philadelphia, Pennsylvania 19104

http://gicl.cs.drexel.edu/

ABSTRACT
The early stages of engineering design are critical, as the de-

cisions made at this point have the most impact on the final prod-
uct. However, little software is available to support engineers
during the initial, conceptual design phase. In addition, at this
and all other stages of design, engineers are increasingly tasked
with utilizing unwieldy collections of data such as databases of
legacy designs and catalogs. This work addresses both of these
issues. A conceptual design interface with several advancements
crucial to industrial deployment is developed and used to aid de-
sign. Among these are provisions for real-time collaboration and
security. A representation of mechanical devices based on in-
tended function is developed and used by the conceptual design
interface to capture design semantics. This representation is de-
fined using a description logic, enabling automated reasoning.
The descriptions created using the conceptual design interface
can thus be employed to annotate designs, create search queries,
and to organize collections of designs. Further, this work incor-
porates Semantic Web technology, enabling conceptual design
knowledge to be published and accessed effectively on the World
Wide Web. New applications of design repositories are made pos-
sible by this but new issues must be investigated and addressed,
as discussed here.

1 INTRODUCTION
Although much software is available and employed in in-

dustry to support detailed geometric design, tolerancing, sim-

∗Also of the Department of Mechanical Engineering

ulation, process planning, and other aspects of product devel-
opment, there remains little support for working at the abstract,
conceptual level of design semantics. However, the advantages
of providing such support have fostered a great deal of research
in this area. Conceptual designinterfaces for engineers work-
ing in the early stages of design are a prominent line of work
in computer-aided design (CAD). Similarly, annotation tools for
capturingdesign semantics—the intended function and behavior
of elements in a device and their rationale—have received much
research attention but are not widely used in industry.

Conceptual design is the process of developing a high-level
product design. Abstract ideas are generated and evaluated
against product requirements and each other. Detailed design
proceeds according to that seen as most favorable. This early
stage in product development is critical, as the solution path cho-
sen at this point is the largest determinant in the product’s final
design, cost, and success.

The importance of capturing design semantics begins during
the early conceptual design stages and continues throughout the
life-cycle of a product. Recorded output from early conceptual
design serves to guide and direct the entire design proces. Simi-
larly, rationale for choices made at each level of design must be
recorded to guide more detailed development. This information
also has great value in enabling later troubleshooting and revi-
sion, re-use in variant design, and inclusion into a larger design.

If captured appropriately, design knowledge as recorded by
software could also be used in a variety of applications beyond
recording the design process. In particular, this knowledge could
be used in the management of collections of engineering de-

1 Copyright c© 2005 by ASME

signs. Much of an engineer’s time is spent examining large
collections of corporate legacy data for designs which may be
modified to solve new problems, or searching through catalogs
in search of components to be incorporated into a design [1].
Support for these tasks in commercial environments is typically
very limited, consisting of browsing manually-managed, sparse
categories based on product line or searching on keywords in as-
sociated design documentation or attributes.

However, design knowledge—the semantics and concepts
behind a design, captured by an annotation and conceptual design
interface—can be used in adesign repository[2,3] to provide en-
hanced versions of these services. Design repositories are an evo-
lution of design databases which apply techniques and methods
developed in the knowledge representation community to cap-
ture and reason on collections of designs. This knowledge can
be used to enable such capabilities as search based on complex
device descriptions, classifying devices into sophisticated cate-
gorization schemes, and automatically developing categorization
schemes for a given set of designs, organizing the collection. All
of these can be used in managing engineering design knowledge,
providing improved support for variant design and other tasks.

These goals are closely aligned with that of the Semantic
Web—the capture, exchange, utilization, and management of
large collections of disparate knowledge. New possibilities for
design repositories are raised by the Semantic Web. The abil-
ity to annotate Web content with machine interpretable knowl-
edge will enable the easy publication of a wide variety of data—
text, CAD, images, simulations—with associated design seman-
tics, improving access for human and machine consumption.
This will enhance collaboration as well as software services.
Based on a shared, common syntax and representational seman-
tics provided by Semantic Web technology and standards, design
knowledge may be more easily exchanged between applications
and users. In addition, it facilitates the incorporation of design
knowledge into World Wide Web content, allowing for sophisti-
cated domain-specific or more general Web search engines and
portal sites to use that information. For example, catalogs with
embedded design semantics may be harvested and used in ad-
vanced, design repository-based web portals.

In this work the three major components of such a system
are developed: a conceptual design/annotation interface, a repre-
sentation of design semantics, and reasoning mechanisms based
on that representation. Figure 1 depicts the interaction between
these components. The annotation/conceptual design interface is
used to record design semantics, captured in a form defined by
the representation. This information can then be used as input to
a repository and other reasoning systems to provide a variety of
different services.

The components developed in this work feature several
prominent aspects. As design is increasingly performed by geo-
graphically and organizationally distributed teams, it is essential
that secure, collaborative design environments are provided at

all stages of design. The conceptual design and annotation in-
terface developed in this work is therefore designed as a collab-
orative environment and includes several novel security mecha-
nisms. Design semantics are captured via a representation based
on engineering function. This representation is defined in a de-
scription logic, providing a formal semantics which enables au-
tomated reasoning. In addition, the representation makes use of
Semantic Web technology, in particular the W3C Ontology Web
Language (OWL)1. This provides a standard description logic
language with which design knowledge captured in this form
can be shared among many reasoners and users. The description
logic inference upon which the repository reasoning engine is
based provides for a great deal of expressiveness while maintain-
ing favorable computational properties. These logics also pro-
vide for new classes of reasoning and applications in this domain.
In addition, as it is based on description logic semantics and not
specifically the domain of engineering design, the reasoning at
the core of the repository is applicable to other domains as well.

This paper is organized as follows: The following section
briefly reviews work related to each of these components. The
approaches taken in this work to developing these components
as well as prototype implementation is described in Section 3.
System operation is briefly shown in Section 4. Some challenges
and interest points are presented in Section 5, followed by con-
cluding remarks in Section 6.

2 RELATED WORK
This section reviews related work in collaborative concep-

tual design and design representation for repository-oriented rea-
soning.

2.1 CONCEPTUAL DESIGN
Approaches to conceptual design fall roughly into two cate-

gories:functional modelingandsketching and layout. Functional
modeling [4,5] is rooted in traditional mechanical design. These
systems focus on the attributes of and relationships between de-
sign elements. Typically these are modeled and presented using
an attributed graph, restricted grammar, or tables. Sketch and
layout-based conceptual design [6–8] focus more on the general
shape and configuration of elements in the design. A common
technique is to provide for generating three-dimensional designs
from two-dimensional sketches, facilitating rapid generation of
approximate shape and configuration. An extensive survey on
the state-of-the-art in conceptual design can be found in [9].

The conceptual design interface employed in this work is a
combination of these two approaches. Properties and connec-
tions between design elements is captured in a functional model-
ing fashion but are associated with abstract or detailed geometry.

1http://www.w3.org/TR/owl-features/

2 Copyright c© 2005 by ASME

Assembly:9vMotor

Produce

function

Assembly

achievedBy

UnlimitedRotation

output

Convert

function

Electrical

input

Assembly:Pad

achievedBy

Assembly:Shaft

achievedBy

Rotation

output

Import

function

Export

function

Connect

function

Part

flow

AxleHole

feature

Designers Conceptual Design/Annotation Design Semantics Repository Operations

Store/Retrieve

Search

Categorize/Browse

Figure 1. INTERACTION BETWEEN COMPONENTS IN MANAGING DESIGN KNOWLEDGE.

In this way, knowledge of both the function and form of a design
may be captured and evolved over time.

Additionally, the conceptual design interface developed in
this work addresses several issues necessary for such applications
to transition from research to industry. This interface is built
on a network architecture in order to support collaborative real-
time design. It also includes several novel security mechanisms
for protecting design knowledge during collaboration between
participants with varying security levels.

2.2 ASSEMBLY REPRESENTATIONS
Most familiar to engineers are the representations of de-

vices used in Computer Aided Design (CAD) packages. At the
core of these are the solid models of the device’s components.
Upon these are placed constraints in the form of analytic ge-
ometry equations describing the motions present in the mecha-
nism. However, such equations provide little basis for reasoning
beyond simulation through constraint solving. In addition, cur-
rent CAD does not typically capture abstract information such as
function in any form suitable for automated reasoning or even ef-
ficient human use. There is also little support for devices which
operate in multiple domains, e.g. with electrical and mechanical
components.

Also familiar to many engineers are representations of func-
tion as in [10]. Many representations have been developed to
explicitly capture the functions present in an assembly [11–13].
Such representations typically capture function information at
various levels of abstraction and across multiple domains, but
typically lack the formal framework to support automated rea-
soning.

Qualitative physics and logic-based representations [14–18]
attempt to define the semantics of assemblies in more abstract
manners than the geometric equations employed in CAD in or-
der to provide for richer inferences. However, these systems typ-
ically do not address many types of inference associated with
design repositories, such as determining similarities between de-
vices. In addition, the expressiveness of the languages used often

incurs significant cost in terms of computability and tractability.

3 SYSTEM OVERVIEW AND COMPONENTS
This section provides an overview of the approach taken in

this work to engineering design knowledge management based
on design semantics along with a description of a prototype im-
plementation. The following sections outline each of the three
core system components shown in Figure 1: the conceptual de-
sign/annotation interface with which the designer interacts; the
representation used to capture the designer’s input; and the rea-
soning mechanisms which implement the repository’s services.

3.1 CONCEPTUAL DESIGN: FACADE
The approach taken to conceptual design in this work has

three aspects: the core capabilities for conceptual design and
semantic annotation, a network architecture to support a col-
laborative environment, and security provisions for collabora-
tion across organizations and access privileges. These have
been implemented inside the FACADE (Framework for Access-
control in Computer-Aided Design Environments) system, a
multi-purpose CAD architecture, as a collection of modules
which may be used or removed as needed. FACADE’s imple-
mentation has been designed for maximum portability across
all platforms. It has been tested and simultaneously developed
in the Solaris/SunOS, Linux, and Windows 2000 operating sys-
tems. Core functionality is in C++. Some Java components are
also used, connected via the Java Native Interface (JNI) standard.
Multi-threaded portions of the framework uses Posix Threads
(pthreads) under Unix derivatives and Windows Threads under
Windows.

The most basic module is a 3D model viewer based on
OpenGL and VRML that supports standard camera navigation
operations and the ability to view models using different shad-
ing algorithms or as a wireframe. Security provisions have been
implemented as a compile-time option integrated into this mod-
ule. A novel access-control mechanism for geometric data called

3 Copyright c© 2005 by ASME

role-based viewing[19] has been employed in this work to pro-
tect sensitive aspects of the design.

This mechanism is based on a familiar role-based access
control framework, but provides several extensions specific to
viewing three dimensional data, such as suppressing features of
the geometry when a viewer does not have adequate permissions.
It also provides several alternatives to this “all-or-nothing” ap-
proach, specifically the ability to simplify and distort the geom-
etry. Such a technique is often used in industry, albeit manu-
ally. The contribution of this technique is that design details are
hidden through automatic simplification of the geometry, allow-
ing for hiding elements entirely or providing partial information
based on the viewer’s privileges.

On top of these core viewing capabilities is built a lite design
module which supports several basic tasks: selection of a part,
assembly, or other selectable entity; applying affine transforma-
tions; setting opacity; decomposing a part into multiple parts;
manipulating control points on parametric surfaces (eg. bezier
patches, splines, and NURBS); and grouping parts and assem-
blies into abstract assemblies. This subsystem is a prerequisite
for most of the other modules. For example, the security mod-
ule already described requires this module in order to provide an
interface for authorized users to assign roles and security param-
eters for later viewing by other users.

Collaborative design is supported by a client-server architec-
ture which provides for real-time multi-user viewing and editing.
A network module in the client interacts with a FACADE server
that acts as an authoritative source for approving client requests.
The server works with the security module to provide role-based
views to clients which do not have permission to manipulate or
view a model or its semantic features at full resolution. Consis-
tency is maintained throughout all connected clients by sending
rejection messages whenever a requested operation causes a con-
flict. Both “thin” and “fat” clients are supported by the server.
Thin clients rely on the server to produce an image of the current
geometry, which is transmitted using the Remote Frame Buffer
(RFB) protocol [20]. Fat clients transmit and receive transfor-
mation requests and resulting geometry to and from the server
using a FACADE-specific protocol. Network code uses BSD-
style sockets under Unix-based derivatives and Winsock2 under
Windows.

At the focus of this paper is the module supporting concep-
tual design and semantic authoring. Three dimensional sketch
functionality is provided by the ability to insert primitive shapes
into the design or load pre-designed components to be used in
creating an assembly. These may then be altered using the pre-
viously described lite design module. Annotation of detailed de-
signs is enabled by the ability to load pre-defined geometry, for
example geometry exported from another CAD product.

Design semantics may be associated with the design through
functionality for attributing and linking design elements with
function and flow information, as described in the following sec-

tion. FACADE extracts annotation relations and attributes from
OWL ontologies which have been retrieved from the World Wide
Web and processed by an OWLJessKB reasoner incorporated
into this module. Annotations may be saved along with geom-
etry or exported to an OWL file and published to the Web.

3.2 REPRESENTATION: FUNCTION AND FLOW SIG-
NATURES

Design semantics are captured in this work byfunction and
flow signatures[21], a representation based on current research
in functional modeling [11–13]. This representation explicitly
captures the function of a device—the goals it achieves and tasks
it performs. Functions may be decomposed into subgoals which
subassemblies or components of the device must accomplish.
Functions operate on flows which generally represent materials,
signals, and energy. Examples include moving items down a con-
veyor belt, transmitting a control signal, and reducing a rotational
speed.

These signatures most resemble the diagrams of [11] but
differ in that this work defines these signatures inside a formal
framework, using a description logic. In this way automated
reasoning can be performed on instances of this representation.
This contrasts with most work in this area, the representations
of which are largely suitable solely for human consumption or
simple keyword searching.

Figure 2 gives a model under this representation for a com-
mon type of light sensor, a cadmium sulfide cell. These sensors
are photoresistors, the presence of light decreases the resistance
encountered by electricity flowing across the cell. This informa-
tion can be represented by a function and flow signature as in
Figure 2(a). By interpreting the signatures as a set of objects and
relations, they can be represented in a description logic model as
in Figure 2(b).

This representation does not rigorously and unambiguously
capture the semantics of mechanisms. Instead, it provides a
language expressive enough to describe and distinguish devices
while maintaining efficiency and computability. It is neither so
formal as to prevent practical computing, nor so informal as to
prohibit automated reasoning [21].

As shown in Figure 3, the representation syntax chosen for
this work is the W3C Ontology Web Language (OWL). The core
ontology describing the basic objects and relations as well as tax-
onomies providing an extensive set of function and flow labels
are encoded as OWL ontologies and published to the World Wide
Web. This makes them accessible to any applications which may
need them, such as the semantic authoring interface described in
the previous section or non-repository-specific reasoners, such as
generic knowledge-based Web search engines. Figure 3(a) pro-
vides representative snippets of the ontologies which define this
representation. The function and flow model presented in Fig-
ure 2 is shown encoded in OWL syntax in Figure 3(b).

4 Copyright c© 2005 by ASME

Assembly:CDS-Cell-Sensor

Measure

function

VisibleLight

input

Component:Pin1

achievedBy

Component:Cell

achievedBy

Component:Pin2

achievedBy

AnalogElectricalSignal

output

Import

function

DC5v

flow

Import

function

Regulate

function

Light

flow

Electrical

flow

Export

function

DC5v

flow

(a) Function and flow signature in graphical form.

〈 〈 type CDS-Cell-Sensor Assembly〉

〈 function CDS-Cell-Sensor node7〉

〈 function Pin2 node8〉

〈 type node0 AnalogElectricalSignal〉

〈 flow node1 node2〉

〈 flow node3 node4〉

〈 function Cell node3〉

〈 type node2 DC5v〉

〈 type node5 Light〉

〈 type node6 VisibleLight〉

〈 achievedBy node7 Cell〉

〈 type node3 Regulate〉

〈 type node7 Measure〉

〈 type node1 Import〉

〈 input node7 node6〉

〈 type Pin1 Component〉

〈 type Cell Component〉

〈 achievedBy node7 Pin1〉

〈 type Pin2 Component〉

〈 type node9 Import〉

〈 type node4 Electrical〉

〈 function Cell node9〉

〈 achievedBy node7 Pin2〉

〈 flow node9 node5〉

〈 flow node8 node10〉

〈 type node8 Export〉

〈 output node7 node0〉

〈 function Pin1 node1〉

〈 type node10 DC5v〉

〉

(b) Figure 2(a) in description logic model form.
Figure 2. Function and flow modeling of a Cadmium Sulfide (CDS) Cell, a common photoresistor.

<owl:Class rdf:about="ŋ#Artifact" />
<owl:Class rdf:about="ŋ#Function" />
<owl:Class rdf:about="ŋ#Flow" />

<owl:Class rdf:about="ŋ#Assembly">
<rdfs:subClassOf rdf:resource="ŋ#Artifact" />

</owl:Class>

<rdf:Property rdf:about="#function">
<rdfs:domain rdf:resource="#Artifact" />
<rdfs:range rdf:resource="#Function" />

</rdf:Property>

...

<owl:Class rdf:about="ŋ#Function">
<owl:disjointWith rdf:resource="ŋ#Flow" />
<owl:disjointWith rdf:resource="ŋ#Artifact" />

</owl:Class>

...

<owl:Class rdf:about="&flow;#AnalogElectricalSignal">
<rdfs:subClassOf rdf:resource="&flow;#Electrical" />
<rdfs:subClassOf rdf:resource="&flow;#Signal" />

</owl:Class>

(a) Snippets from core ontology and vocabulary extensions.

<eng:Assembly rdf:about="#CDSCellSensor">
<eng:function>

<func:Measure>
<eng:input><flow:VisibleLight /></eng:input>

<eng:achievedBy>
<eng:Component rdf:about="#Pin1">

<eng:function>
<func:Import>
<eng:flow>

<flow:DC5v />
</eng:flow>
</func:Import>

</eng:function>
</eng:Component>

</eng:achievedBy>

...

<eng:output>
<flow:AnalogElectricalSignal />

</eng:output>
</func:Measure>

</eng:function>
</eng:Assembly>

(b) Portion of CDS Cell representation as given in Figure 2.

Figure 3. Ontologies and data in OWL form.

3.3 REASONING: OWLJESSKB

Core reasoning support in this system is provided by OWL-
JessKB, based on DAMLJessKB [22]. OWLJessKB is a de-
scription logic reasoner implemented inside a production sys-
tem. OWL documents in RDF-XML form are retrieved from
the World Wide Web and converted into triples. These are as-
serted into the knowledge base and rules implementing the OWL
semantics are then applied. Applications such as FACADE or

a web portal then query the knowledge base to extract inferred
knowledge or may apply their own application-specific reason-
ing inside the production system.

OWLJessKB is a sound description logic reasoner, given
that it makes a non-standard closed world assumption. Although
this produces some technically incorrect inferences, these tend to
be useful in practice as much Semantic Web data does not include
specific closure axioms where appropriate. To promote practical

5 Copyright c© 2005 by ASME

run-times, OWLJessKB has been designed as an incomplete rea-
soner. Uncommon inference rules are not incorporated into the
rule base, reducing its size and improving its performance. This
means there exist valid inputs which OWLJessKB may not pro-
cess, but these are rare in practice.

OWLJessKB uses the Java Expert System Shell2 (JESS) as
the underlying production system. The combination of JESS and
OWLJessKB provides a solid application development frame-
work for working with Semantic Web ontologies and data, es-
pecially in environments well suited for Java development, such
as web services and embedded devices.

Standard description logic inferences can be used in a num-
ber of repository reasoning tasks. In addition to being inter-
pretable as statements in a description logic model, the function
and flow signatures presented in this paper may also be inter-
preted as concept descriptions. In this way, they may be used
to manually create a categorization against which devices in the
repository are sorted. Search functionality may be similarly im-
plemented, treating the query as a concept description and clas-
sifying device instances against that definition. Description logic
subsumptionmay be used to manually construct a categoriza-
tion in a bottom-up, generally more intuitive fashion. Less stan-
dard inferences may also be applied, for example induction of
the least common subsumerof sets of classes may be used to au-
tomatically create a categorization from a collection of devices.
This has the potential to be a powerful information management
tool once techniques have been developed to address several is-
sues, e.g. the density of the generated hierarchy. Repository
capabilities provided by these inferences and their relationship
to traditional databases is discussed further in [21].

The Semantic Web introduces several new capabilities to
design repositories. In particular, the ability to markup device-
related Web content with the representation outlined in this paper
makes it straightforward to publish a wide variety of data—text,
CAD, images, simulations—with associated design semantics to
any number of repositories and other reasoning engines. Within
engineering design, this makes it easier for loosely coupled de-
sign teams to collaborate, for example by identifying redundant
design efforts. Another application is for part catalogs and sim-
ilar materials to be marked up on corporate websites. That in-
formation may then be aggregated by a portal site providing an
interface to many vendors. With a repository running at the core
of the site, large amounts of data may be collected, organized,
and utilized in more robust and sophisticated ways than under
current practice.

4 SCENARIO
Figure 4 gives an example of using this system to query a

repository of designs. In Figures 4(a)–4(c) the designer creates

2http://herzberg.ca.sandia.gov/jess/

a three-dimensional sketch of a simple sensor. This sketch is
then annotated with the desired functions and flows, as in Fig-
ures 4(d) and 4(e). Figure 4(f) depicts the function and flow sig-
nature as exported from the conceptual design interface. The rea-
soner then converts the signature into a class description, shown
in Figure 4(g). Members of this class description, those designs
which match the signature, are then returned to the designer as
the results of the query.

5 DISCUSSION
The following briefly outlines a few issues raised in the de-

velopment of this system, particularly in regard to the Semantic
Web.

Effective User Interfaces. There exist many efforts to develop
domain neutral, generic annotation tools for the Semantic Web.
For many domains and applications, such as engineering design,
these will be unsuitable. Users are uncomfortable with knowl-
edge representation, the process is too slow, the data too com-
plex. However, it is advantageous to uncouple these tools from
specific ontologies and increase their applicability. FACADE
currently loads its labels from OWL ontologies. Use of a core
ontology requires implementation of an annotation module com-
pliant with and supportive of its structure. If the tool incorporated
more reasoning, it would be possible to leverage and support on-
tologies in a more dynamic fashion. The challenge would be to
maintain flexibility while providing an interface that is specific
or adaptive enough to remain relevant and effective. Addition-
ally, the difficulty faced in hiding the details of knowledge repre-
sentation will increase with the expressiveness of the underlying
languages.

Knowledge Association and Linking. A large problem faced
in developing FACADE was the mechanisms by which to con-
nect Semantic Web-encoded knowledge with traditional data.
Currently, the association is maintained at the artifact level by
names shared between the functional modeling and objects of
the VRML geometry upon which FACADE primarily operates.
Less clear is how to maintain this connection at other levels and
to other media—e.g. between a function and a feature, with sev-
eral associated CAD models. Also not obvious is how best to
store and distribute media while maintaining links to associated
material. Fortunately, general techniques for addressing these
issues will be applicable across a range of domains and applica-
tions.

Expressiveness, Computation, and Development.The bulk
of current work on the Semantic Web employs relatively con-
strained logical foundations, most frequently description logics.
These place substantial limits on expressiveness in favor of com-
putability and tractability. Such logics can not capture even min-

6 Copyright c© 2005 by ASME

(a) The designer places generic shapes to represent
the sensor leads.

(b) A plate is placed to stand in for the sensor body. (c) All three components are grouped into an as-
sembly, represented by a box.

(d) One lead is annotated as achieving theImport function. (e) The assembly is annotated as achieving theMeasurefunction.

Assembly:Measure-Sensor

Measure

function

Component:Pin1

achievedBy

Import

function

DC5v

flow

(f) The function and flow signature is ex-
ported from the annotations.

Measure-Sensor≡ Assemblyu ∃function.[Measureu ∃achievedBy.[Componentu ∃function.[Import u ∃flow.DC5v]]].

Assembly:CDS-Cell-Sensor

Measure

function

VisibleLight

input

Component:Pin1

achievedBy

Component:Cell

achievedBy

Component:Pin2

achievedBy

AnalogElectricalSignal

output

Import

function

DC5v

flow

Import

function

Regulate

function

Light

flow

Electrical

flow

Export

function

DC5v

flow

Assembly:Encoder

Detect

function

Material

input

Component:IRPair

achievedBy

DigitalElectricalSignal

output

Detect

function

InfraredLight

flow

Component:Emitter

achievedBy

Component:Detector

achievedBy

Produce

function

InfraredLight

flow

Detect

function

InfraredLight

flow

Assembly:9vMotor

Produce

function

Assembly

achievedBy

UnlimitedRotation

output

Convert

function

Electrical

input

Assembly:Pad

achievedBy

Assembly:Shaft

achievedBy

Rotation

output

Import

function

Export

function

Connect

function

Part

flow

AxleHole

feature

Assembly:Phototransistor

Measure

function

VisibleLight

input

Component:Pin1

achievedBy

Component:Transistor

achievedBy

Component:Pin2

achievedBy

AnalogElectricalSignal

output

Import

function

DC5v

flow

Import

function

Regulate

function

Light

flow

Electrical

flow

Export

function

DC5v

flow

Assembly:Switch

Detect

function

Material

input

Component:Arm

achievedBy

DigitalElectricalSignal

output

Actuate

function

Electrical

flow

(g) The signature is converted to a class description against which designs are classified.

Figure 4. An example of creating a query for electronic sensors which measure a flow.

7 Copyright c© 2005 by ASME

imal domain semantics in engineering. The challenge then is
to maximize the benefits of accepting these limitations. For ex-
ample, function and flow signatures do not rigorously and un-
ambiguously capture design semantics. Instead, they provide a
language expressive enough to describe and distinguish devices
while maintaining efficiency and computability. They are neither
so formal as to prevent practical computing, nor so informal as
to prohibit automated reasoning. Importantly, they are also well
suited to the application—description logics offer a variety of in-
ferences and abilities well suited to design repositories, such as
classification and the least common subsumer.

Syntax and Canonical Form. Prominent among limitations of
function and flow signatures and similar representations is that it
is possible to create distinct models of the same design. That
these are not equivalent will be missed due to the lack of true
semantics. However, in addition to being difficult to develop,
ontologies strong enough to overcome this will probably face
significant practical and theoretical complexity problems. An ap-
proach to addressing this issue might be to employ hierarchical
representations with varying levels of semantics for use in differ-
ent tasks. For example, rich semantics may be used to determine
canonical or simpler form for given input, which may then be
submitted to more complex processes such as insertion into the
repository.

A related issue stems from the fact that although there is
recognition in industry of the benefits of applying advanced tech-
niques to engineering design, there is also a great deal of in-
ertia. To overcome this, bridges to legacy and classical appli-
cations will have to be developed as knowledge-based tools are
brought on line. One approach, taken by the Process Specifica-
tion Language Project (PSL)3, is to develop grammars for canon-
ical forms associated with certain classes and relations. Adapters
and other software may then correctly parse much valid data via
the grammars rather than extensive reasoning.

Tractability and Specialized Reasoning These techniques
raise issues regarding the validity of software which cannot ac-
cept all valid inputs, particularly of concern in the diverse envi-
ronments of the World Wide Web and the agent-populated Se-
mantic Web. Such tradeoffs are similar to those made in restrain-
ing the logical foundations of Semantic Web, and highlight other
possibilities. Although popular for their decidability and fast rea-
soning in practice, many of all but basic description logics are
theoretically intractable. In addition, even fast implementations
may be overcome by applications such as real-world repositories,
which may consist of thousands to millions of parts.

The approach to this problem under investigation in this
work is to indirectly apply the semantics of the representation,
such as the aforementioned conversion to canonical form. In

3An ontology of manufacturing processes—http://nist.gov/psl/ .

addition, the correctness of special-purpose algorithms may be
verified via comparison against the ontology. Importantly, the
semantics of the representation may guide the development of
and provide meaning to specialized algorithms and techniques,
e.g. ontology-optimized categorization techniques based on the
least common subsumer.

6 CONCLUSIONS
Supporting the early stages of engineering design requires

conceptual design tools with provisions for practical use, such as
security and real-time collaboration. It also requires the ability to
capture both the form of the design and the underlying functional
semantics. Properly captured, such knowledge can be used in a
variety of manners, from recording design rationale to working
with large collections of engineering data. In addition, technol-
ogy and results from the developing Semantic Web may ease this
process and enable new applications. This paper has introduced
work addressing each of these areas, and is hoped to contribute
to the introduction of such capabilities to industry.

ACKNOWLEDGMENT
This work supported in part by National Science Foundation

(NSF) CAREER Award CISE/IIS-9733545 and Office of Naval
Research (ONR) Grant N00014-01-1-0618. Additional support
by Honeywell FM&T, AT&T Labs, Bentley Systems and Lock-
heed Martin, Naval Electronics and Surveillance Systems. All
opinions, findings, and conclusions expressed in this material are
those of the author(s) and not necessarily those of the supporting
organizations.

REFERENCES
[1] Ullman, D. G., 1997. The Mechanical Design Process.

McGraw-Hill, Inc. ISBN 0-07-065756-4.
[2] Szykman, S., Bochenek, C., Racz, J. W., Senfaute, J., and

Sriram, R. D., 2000. “Design repositories: Engineering
design’s new knowledge base”.IEEE Intelligent Systems,
15(3), May/June, pp. 48–55.

[3] Szykman, S., Sriram, R. D., and Regli, W. C., 2001.
“The role of knowledge in next-generation product devel-
opment systems”.ASME Transactions, the Journal of Com-
puter and Information Science in Engineering,1(1), March,
pp. 3–11.

[4] Serrano, D., and Gossard, D., 1992. “Tools and techniques
for conceptual design”. InArtificial Intelligence in En-
gineering Design: Design Representation and Models of
Routine Design, C. Tong and D. R. Sriram, eds., Vol. I.
Academic Press, 1250 Sixth Ave, San Diego, CA, ch. 3,
pp. 71–116. ISBN 0-12-660561-0.

8 Copyright c© 2005 by ASME

[5] Al-Hakim, L., Kusiak, A., and Mathew, J., 2000. “A graph-
theoretic approach to conceptual design with functional
perspectives”. International Journal of Computer Aided
Design,32(14), December, pp. 867–875. Special issue on
Conceptual Design.

[6] Qin, S., Wright, D., and Jordanov, I., 2000. “From on-line
sketching to 2d and 3d geometry: a system based on fuzzy
knowledge”.International Journal of Computer Aided De-
sign, 32(14), December, pp. 851–866. Special issue on
Conceptual Design.

[7] Lipson, H., and Shpitalni, M., 2000. “Conceptual design
and analysis by sketching”.Artificial Intelligence for Engi-
neering Design, Analysis, and Manufacturing (AIEDAM),
14(5), November, pp. 391–402.

[8] Eggli, L., Hsu, C. Y., Bruderlin, B. D., and Elber, G.,
1997. “Inferring 3d models from freehand sketches and
constraints”. Computer-Aided Design,29(2), February,
pp. 101–112.

[9] Wang, L., Shen, W., Xie, H., Neelamkavil, J., and Par-
dasani, A., 2001. “Collaborative conceptual design–state of
the art and future trends”.Computer-Aided Design,34(13),
pp. 981–996.

[10] Pahl, G., and Beitz, W., 1996.Engineering Design—A Sys-
tematic Approach, 2nd ed. Springer, London, UK.

[11] Szykman, S., Racz, J. W., and Sriram, R. D., 1999. “The
representation of function in computer-based design”. In
ASME Design Engineering Technical Conferences, 11th
International Conference on Design Theory and Method-
ology, ASME, ASME Press. DETC99/DTM-8742.

[12] Hirtz, J., Stone, R., McAdams, D., S, S., and Wood, K.,
2001. “Evolving a functional basis for engineering design”.
In ASME Design Engineering Technical Conferences, 13th
conference on Design Theory and Methodology, ASME,
ASME Press. DETC01/DTM-21688.

[13] Kirschman, C., Fadel, G., and Jara-Almonte, C., 1996.
“Classifying functions for mechanical design”. In ASME
Design Engineering Technical Conferences, 8th conference
on Design Theory and Methodology, ASME, ASME Press.
DETC96/DTM-1504.

[14] Faltings, B., 1990. “Qualitative kinematics in mecha-
nisms”. Artificial Intelligence,44, pp. 89—119.

[15] Kuipers, B., 1984. “Commonsense reasoning about causal-
ity: Deriving behavior from structure”.Artificial Intelli-
gence,24, pp. 169—204.

[16] Forbus, K., 1984. “Qualitative process theory”.Artificial
Intelligence,24, pp. 85–168.

[17] Subramanian, D., and Wang, C., 1993. “Kinematic synthe-
sis with configuration spaces”. In Proceedings of Qualita-
tive Reasoning 93,, pp. 228–239.

[18] Joskowicz, L., and Neville, D., 1996. “A representation
language for mechanical behavior”.Artificial Intelligence
in Engineering, pp. 109—116.

[19] Cera, C. D., Kim, T., Han, J., and Regli, W. C., 2004.
“Role-Based Viewing in Secure Collaborative CAD”.Ac-
cepted to the Journal of Computer Aided Design.

[20] Richardson, T., and Wood, K. R., 1998. The RFB Protocol
version 3.3. Protocol Specification, July.

[21] Kopena, J. B., and Regli, W. C., 2003. “Functional mod-
eling of engineering designs for the semantic web”.IEEE
Data Engineering Bulletin,26(4), December, pp. 55–62.

[22] Kopena, J. B., and Regli, W. C., 2003. “DAMLJessKB: A
tool for reasoning with the semantic web”. In International
Semantic Web Conference, Springer Verlag, pp. 628–643.

9 Copyright c© 2005 by ASME

