
572 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 39, NO. 5, SEPTEMBER 2009

Development and Specification of a Reference Model
for Agent-Based Systems

William C. Regli, Senior Member, IEEE, Israel Mayk, Senior Member, IEEE, Christopher J. Dugan,
Joseph B. Kopena, Robert N. Lass, Student Member, IEEE, Pragnesh Jay Modi,

William M. Mongan, Student Member, IEEE, Jeff K. Salvage, and Evan A. Sultanik, Student Member, IEEE

Abstract—Agent-based systems have been the object of intense
research over the past decade. While great theoretical progress
has been made, the software frameworks for creating agent-based
systems offer considerable variability in their capabilities and func-
tionality. This paper introduces a reference model for agent-based
systems. The purpose of a reference model is to provide a common
conceptual basis for comparing systems and driving the develop-
ment of software architectures and other standards. The Founda-
tion for Intelligent Physical Agents and other groups have advanced
a number of agent standards, yet, to date, no comprehensive ref-
erence model has been presented for software systems composed
of agents. This paper provides an overview of a reference model
for agent-based systems. The agent systems reference model is the
result of a multiyear effort studying software systems built with
agents and software frameworks for implementing these systems.
As part of this study, the team applied software reverse engineer-
ing techniques to perform static and dynamic analysis of opera-
tional agent-based systems. This analysis enabled identification of
key common concepts across over one dozen different agent frame-
works. To demonstrate its applicability, the reference model is then
used to analyze a number of complete agent-based software sys-
tems. It is the belief of the authors that the reference model will
be an essential prerequisite for future transition, deployment, and
integration of agent-based systems.

Index Terms—Agents, distributed artificial intelligence (AI),
multiagent, reference model, reverse engineering, software
engineering.

I. INTRODUCTION

THIS paper provides an introduction and overview to a ref-
erence model for those who develop and deploy systems

based on agent technology. The agent systems reference model
(ASRM) [1] aims to allow for existing and future agent frame-
works to be compared and contrasted as well as provide a ba-
sis for identifying areas that require standardization within the
agents community. This reference model makes no prescriptive

Manuscript received July 8, 2008; revised November 17, 2008. First pub-
lished May 15, 2009; Current version published August 19, 2009. This paper
was recommended by Associate Editor R. Brennan.

W. C. Regli, C. J. Dugan, J. B. Kopena, R. N. Lass, W. M. Mongan,
J. K. Salvage, and E. A. Sultanik are with the Department of Computer Sci-
ence, Drexel University, Philadelphia, PA 19147 USA (e-mail: regli@drexel.
edu; cjd48@cs.drexel.edu; tjkopena@cs.drexel.edu; urlass@cs.drexel.edu;
wmm24@drexel.edu; jks29@drexel.edu; eas28@cs.drexel.edu).

I. Mayk is with the U.S. Army Research, Development and Engineering Com-
mand (RDECOM), Communications-Electronics Research, Development and
Engineering Center (CERDEC)/C2D, Fort Monmouth, NJ 07703 USA (e-mail:
israel.mayk@us.army.mil).

P. J. Modi, deceased, was with the Department of Computer Science, Drexel
University, Philadelphia, PA 19147 USA.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMCC.2009.2020507

recommendations about how to best implement an agent system,
nor the objective to advocate for any particular agent system,
framework, architecture, or approach. It:

1) establishes a taxonomy of terms, concepts, and definitions
needed to compare agent systems;

2) identifies functional elements that are common in agent
systems;

3) captures data flow and dependencies among the functional
elements in agent systems;

4) specifies assumptions and requirements regarding the de-
pendencies among these elements.

The ultimate goal of the ASRM is to facilitate adoption, adap-
tation, and integration of agent technologies into systems for
use by government and private industry, with a particular focus
on applications in military command and control. Reference
models achieve this payoff by providing appropriate abstrac-
tions, simplifying problem solving, and providing patterns of
the solution for software developers [2]. It is essential and com-
monplace to create reference models in all fields of knowledge.

Statement of need: The need for a reference model for agent
systems is historically similar to the need for communications
standards. In the early 1980s, communications systems were
proprietary in nature; consequently, there was a divide between
communications devices and computer systems. The proposed
solution was to establish an open system architecture: an n-
layered approach to standardize communications systems [3].
Eventually, a seven-layer model was established that has with-
stood the test of time. The growth of these communications
systems prior to the development of the reference model is
comparable to the present level of interest in agent frameworks.
In the context of this paper and the reference model, agent
frameworks are the libraries and application programming in-
terfaces (APIs) for the construction of agents and agent-based
systems. Enough frameworks exist right now and are openly
available for inspection to lay the groundwork for such a ref-
erence model. In the course of this paper, the investigators
studied over one dozen fielded agent frameworks, including
those in [4]–[8], with A-Globe [9], enhanced mobile agent ar-
chitecture (EMAA) [10], Java agent development environment
(JADE) [11], NOMADS [12], and the Control of Agent Based
System (CoABS) Grid [13] having presentation herein.

It is our belief that the reference model is compatible with
all existing agent frameworks and will be applicable to all those
in the future. The ASRM is designed by extracting commonal-
ities between existing frameworks and applying existing agent
research. The ASRM provides a common ontology for those

1094-6977/$25.00 © 2009 IEEE

REGLI et al.: DEVELOPMENT AND SPECIFICATION OF A REFERENCE MODEL FOR AGENT-BASED SYSTEMS 573

frameworks studied and those yet to be built. Previous systems
benefit from this model since the advantages and disadvantages
of each system become clear. Developers of future frameworks
will have a blueprint to follow, forming the basis on which all
agent systems—past, present, and future—are compared.

With the ASRM, it becomes possible to specify applications
without the need to consider which framework is being used. In
fact, the applications should be supported across multiple frame-
works that adhere to these guidelines. System engineering tasks
also benefit from the reference model because the information
used to construct the model was gathered using both common
and specially developed analysis techniques. Previously built
systems were analyzed and compared in order to piece together
a common model. These techniques are applicable to the analy-
sis of almost any system since they, too, are built piece by piece.
The specially developed techniques can also be applied in a sim-
ilar fashion. Further, the techniques themselves can be studied
and improved. Agent frameworks are organizationally similar
to operating systems, so these reverse engineering techniques
also apply in this realm.

Contributions of this paper: There are two key contributions
of this paper. First, and most directly, is that the paper introduces
terminology and concepts to form a reference model for agent-
based systems. Note that, due to page limitations, this paper can
provide only an introduction and overview to the ASRM. For
more detail—including over 200 pages of terminology use cases
and examples—readers are referred to the complete ASRM [1].

A second, more indirect, result of this research is our novel
approach to the construction of this reference model using soft-
ware reverse engineering techniques. By performing reverse en-
gineering techniques on existing (open-source and proprietary)
agent systems and frameworks, one obtains the software mod-
ules that comprise the subject systems. Underlying assumptions
on the part of agent framework developers about “what is an
agent” and how agents should interact become transparent. Data
are produced allowing the documentation and understanding of
legacy software systems and for verification of existing software
documentation. These data are further abstracted to obtain this
abstract “essence” of the systems. By grouping, abstracting, and
querying these data in different ways, quantitative, objective in-
formation about the design of agents and agent-based systems
is obtained.

This is useful in several ways. First, reverse engineering tech-
niques allow not only for identification of components within the
reference model, but also to identify both structural and behav-
ioral similarities to the reference model. Agent systems can be
automatically observed at runtime and analyzed to find exactly
which components correlate with particular features offered by
the agent framework. The result is a set of components that are
mappable directly to the reference model, thus validating its
relevance to existing agent systems.

Organization of this paper: This paper is organized as follows.
First, an introduction to the background of reference modeling
and a review of agent systems literature are provided. This is
followed by a description of the technical approach employed
to produce the reference model, including a list of definitions.
The layers of the reference model itself are then introduced,

Fig. 1. Role of a reference model: Drives creation of one or more reference
architectures, which drive the creation of one or more designs, which, in turn,
drive the development of one or more implementations.

followed by descriptions of the individual functional concepts
therein. Finally, the utility of the model is exampled through
mappings of existing agent frameworks to the reference model
and also domain-specific case studies.

II. BACKGROUND

This section provides an introduction to reference modeling
and background on multiagent systems (MASs).

A. On Reference Modeling

A reference model describes the abstract functional elements
of a system. A reference model does not impose specific design
decisions on a system designer. APIs, protocols, encodings,
etc., are standards that can be used concurrently with a refer-
ence model. A reference model does not define an architecture.
A reference model can drive the implementation of multiple
architectures in the same way as that a reference architecture
could drive multiple designs, or a design could drive multiple
implementations (see Fig. 1).

The reference model provides a common ontology, innovative
and practical system engineering techniques, and software de-
velopment guidance. All of these ideas support evolving agent
frameworks and application program interfaces (APIs)—past,
present, and future. If the ASRM is used correctly, the result will
be specification of and discourse on independently developed
software agents and agencies regardless of their environment.

1) Examples of Reference Models: The basis for this effort is
to follow the approach advocated by the International Standards
Organization (ISO) for the development of reference models.
In addition, this effort aims to be compatible with the reference
models being developed for the Federal Enterprise Architec-
ture.1 This paper draws heavily on the reference modeling ap-
proaches utilized by several approved international standards,
in particular ISO 14721:2003, also known as Consultative Com-
mittee for Space Data Systems (CCSDS) 650.0-B-1, the “Refer-
ence Model for an Open Archival Information System (OAIS),”
and ISO/IEC 7498-1:1994, the “Open Systems Interconnection
Basic Reference Model.”

1http://www.feapmo.gov/

574 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 39, NO. 5, SEPTEMBER 2009

An excellent example of an existing reference model is the
ISO Open Systems Interconnection (OSI) reference model,
which describes a seven-layered network framework for imple-
menting protocols. OSI only describes the abstract functional
layers of the network, and does not impose standards or proto-
cols that are to be used at each layer. One could choose to use
Transmission Control Protocol (TCP)/IP, Appletalk, or even cre-
ate their own protocol for each layer, while still remaining true
to the OSI model.

2) Related Reference Models and Standards for Agents: In
the area of agent systems, a reference model for mobile agent
systems was constructed in [14]. While superficially similar to
the ASRM (most of the definitions for terms, relationships, and
abstract entities are compatible with the ASRM), its main focus
is on comparing and evaluating different mobile agent systems.
In addition, the model is more prescriptive of software archi-
tecture than the ASRM, which is independent of the particular
software architecture for agents. For example, a set of mini-
mum feature requirements (e.g., one of the required components,
the agent execution system, supports mobility, communications,
agent serialization, and security) is presented in [14].

Standards such as those of the Foundation for Intelligent
Physical Agents (FIPA), Knowledge Interchange Format (KIF),
Knowledge Query Manipulation Language (KQML), and even
some nonagent specific standards have a place here, some of
which may be used in conjunction with the reference model.
The reference model defines the required existence of compo-
nents; standards prescribe how they are designed.

Some may see a resemblance between the FIPA Abstract Ar-
chitecture [15] and the ASRM; however, the reference model
is a further abstraction of an abstract architecture. The ASRM
defines terms, describes concepts, and identifies functional ele-
ments in agent systems. The goal is to allow people developing
and implementing agent systems to have a frame of reference
to discuss agent systems. The FIPA Abstract Architecture de-
scribes an abstract architecture, with the intent of enforcing
interoperability between conforming agent systems.

B. Review of Agent Systems Literature

In addition to the software analysis results, this reference
model is a reflection of a wide variety of research publications on
agent technology and systems. Information was gathered from
many sources including journals, magazine articles, conference
proceedings, textbooks, white papers, and manuals for agent
frameworks. Due to the breadth of subjects classified under
“agent research,” a comprehensive background study is beyond
the scope of this paper and would be duplicative of excellent
survey results previously published. This section provides a
brief “survey of surveys” to provide a context for the ARSM.
It is organized by the subject where the actual categories are
purposely broad and the scope of each is the entire agent world.
This section does not attempt to make a universal observation
about the agent field or any particular subset. These surveys can
be categorized as follows.

1) Analysis of the agent programming paradigm: Surveys of
this type comment on the usefulness of agent frameworks
or architectures. Applications are sometimes provided as

evidence, and comparisons are usually made with other
programming paradigms.

2) Agents as methodology: These surveys explain how to
conduct agent research and how the results can be applied
to the real world.

3) Status of agent research: Surveys that fall into one of
three subcategories can be found here: historical overview,
present trends, or predictions for the future.

4) Agent textbooks: Textbooks attempting to distill agent re-
search into a form suitable for undergraduate or graduate
education have appeared in recent years. They may serve
a variety of purposes, so they are included in their own
category.

Several key references in each of these areas are introduced
later. While there are many other possible articles that could be
cited in each category, those presented later provide a reasonable
starting point for anyone interested in understanding the agent
field as a whole.

1) Agents as Software Paradigm: Chess et al. [16] describe
the lifecycle of an agent and how it migrates internally through
the API and externally through the network between nodes.
Etzioni and Weld [17] attempt to formally define an agent by
listing some desirable characteristics: it should be autonomous,
exhibit temporal continuity, have its own character, be able to
communicate, be adaptive, and be able to migrate. Many infor-
mation agents exhibit these characteristics, and Etzioni analyzes
SoftBot as an example. Ghezzi and Vigna [18] show benefits of
using agent technologies by comparing and contrasting separate
implementations. In particular, they highlight the differences by
comparing some implementations with the client–server model
and a remove evaluation design. Agents can include mobile code
and there are three categories used to compare the implemen-
tations of mobile agents: message-based transmissions, strong
mobility, and weak mobility. Fuggetta et al. [19] explain mobile
code and present a framework for understanding such mobile
code and give a wide range of example implementations. Kotz
et al. [20] analyze the many barriers that agent research must
overcome before it can be differentiated from mobile code.

In a seminal work, Huhns and Singh [21] edited a collection
of documents highlighting key characteristics of agent think-
ing, emerging applications, architectures and infrastructures,
and theoretical models. These documents are by various authors
and from various sources, but represent the “best synthesis of
current thinking.” Apart from the documents, the authors give a
good overview of agent-related terms: agents, systems, frame-
works, environments, and autonomity. The authors also provide
an operational definition of computational agency in [22].

Gray et al. [23] establish the major advantages for using
agents. They admit that for every program implemented using
agents, there may be a better alternative; however, agents provide
enough generalization to be decent solutions to a wide range of
problems. Using agents renders the following advantages: con-
served bandwidth, reduction of completion time when executing
across a network, reduction in latency across a network, provide
more efficient and disconnected operations, providing “auto-
matic” load balancing, and allowing for dynamic deployment
of code.

REGLI et al.: DEVELOPMENT AND SPECIFICATION OF A REFERENCE MODEL FOR AGENT-BASED SYSTEMS 575

Wooldridge [24] explores the forum of rational agents: those
that are capable of performing independent and autonomous ac-
tions using “good” decision making. He introduces the belief–
desire–intention (BDI) model of rational decision making.
Wooldridge then turns his attention to Logic of Rational Agents
(LORA). This framework is then used to highlight teamwork,
communication, and cooperative problem solving with regard
to rational agents.

2) Agents as Methodology: Hanks et al. [25] describe com-
mon problems stemming from the way research is conducted
using artificial intelligence (AI) planning-oriented implemen-
tations of agent test beds. In particular, Hanks et al. promote
the idea that many researchers need to realize the extent to
which they are working in a controlled environment; experi-
ments merely produce comparisons between environment pa-
rameters and how the agent reacts. Likewise, benchmarks and
test beds are empirical tools, and thus should be used with cau-
tion in the theoretical realm. Fonseca et al. [26] recognize the
existence of hundreds of agent system implementations that are
all quite similar in operation. As the interest in agent research
evolves, researchers are restricting their focus to developing
their own implementations from the ground up. Fonseca et al.
believe this approach is awry and that a better solution is to
improve upon the existing agent systems. In particular, JADE
and ZEUS are examined with their similarities extracted and
combined in order to produce a second-generation MAS.

3) Status Reports on Agents Research: Nwana [27] explores
the definition of an agent. He presents agents as consisting of
cooperation, learning, and autonomy. Within each of these pos-
sible classifications, there are subclassifications defined such as
collaborative agents, interface agents, and so on. Each of these
categorizations is described with a hypothesis, goal, motivation,
benefits and role, criticism of work in that field, and challenges
facing implementation. Hagen et al. [28] discuss the impact of
agents on various mobile object middlewares. Sycara [29] de-
velops a definition of MAS that involve limited viewpoints, no
global control, decentralized data, and asynchronous compu-
tation. She also puts forth several problems that are currently
faced and will be faced by the developers of such agent frame-
works. At a lower level, agents in MAS must contain the ability
to reason, organize themselves, and share the workload in order
to operate efficiently.

In a seminal work, Jennings et al.’s [30] paper attempts to
provide “order and coherence” to the field of agent technolo-
gies. They begin with a brief overview of agents, highlighting
their definition of an agent: “an entity that acquires information,
reasons, and reacts.” A history of agents is detailed followed by
a status report on various fields within agent research, includ-
ing human–computer interaction, distributed AI, and constraint-
based problem solving. An overview of agent-based systems is
presented that leads into a discussion about previous implemen-
tations, future implementations, and the applications of these
systems. The applications are examined at length and include air
traffic control, auctioning, video games, medical technologies,
and more. Jennings et al. conclude by noting that agent-based
research is a new field with great potential that will find a variety
of applications upon its maturity.

4) Agents Textbooks: There are several excellent textbooks
in the area of MASs. These include those by Vigna [31],
D’Inverno [32], Weiss [33], Wooldridge [34], and, most gen-
erally, Russell and Norvig [35]. Milojicic et al.’s book [36]
is a survey on mobility with a domain that extends to not
only agents, but also to processes and computers. The book
of Wooldridge [34] is an introductory text to agents and MASs.
A brief history is followed by an exposition concerning indi-
vidual agents. The usual, broad definition of agents is given,
and then, reasoning and reacting are examined. The remainder
of the book explores collections of agents. In these environ-
ments, agents interact in order to solve problems. They can each
work independently by solving parts of a problem or work to-
gether as a unified group. Specific examples are cited in order
to strengthen this notion.

III. TECHNICAL APPROACH TO AGENT SYSTEMS

REFERENCE MODELING

The technical approach taken to create this reference model
uses forensic software analysis of existing agent-based systems.
An agent-based system may consist of many different kinds of
agents operating across a heterogeneous set of computing plat-
forms. Rather than trying to develop a consensus about “what
is an agent,”2 this paper offers a different approach from the
largely inconclusive debates of the past: the reference model
developed in this paper is based on static and dynamic soft-
ware analysis of fielded agent systems. Hence, an agent-based
system describes a software platform for both building agents
and supporting their communications and collaboration within
systems.

There are many products in the marketplace today that are
marketed as agent frameworks from various sources: compa-
nies, academia, and the open source community. These agent
frameworks have emerged from several large governmental and
private research and development programs and were used in the
creation of many successful military and commercial systems.

This paper takes a quantitative and evidentiary approach; if
it can be built with one of these systems, an artifact might be
called an “agent.” Anyone building a new agent framework must
recreate or reproduce some portion of the components in these
frameworks (i.e., to enable communication, agent startup, shut-
down, etc.). Hence, by analyzing existing agent frameworks,
this reference model documents the existing state-of-the-art for
what the community believes is an “agent” by looking at imple-
mented examples.

The result of this analysis is a detailed view of the superset
of the features, functions, and data elements in the set of ex-
isting agent frameworks. Given that each framework may have
slightly different functional components, the reference model
describes, at an abstract level, a set of functional components
that an agent framework may have. It is, however, important
to note that the model is not confined to being a description
of existing capabilities and platforms—it serves as a basis for
situating a set of functional and data elements that anyone may

2Or worse, what is an “intelligent” agent.

576 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 39, NO. 5, SEPTEMBER 2009

Fig. 2. Example of software analysis on an existing agent framework. In this case, the figure shows a functional breakdown of the FlexFeed subsystem of the
NOMADS agent framework. Ovals represent classes, rectangles/octagons represent clusters of classes, and edges represent method invocations.

want or need to have in an agent platform. For example, security
for mobile agent code is currently a vastly challenging problem
that lacks a satisfactory solution; however, the lack of any es-
tablished, uniform, and generally accepted security system for
mobile agents does not preclude the reference model from in-
cluding a description of the security functions and facilities that
an agent platform should provide. Reference models do not pre-
scribe how functions and systems should be implemented; the
ASRM is no different. Given the vast array of tasks envisioned
for agent systems, it is not the role of a reference model to
account for each possible application architecture.

A. Creating the ASRM via Reverse Engineering

The typical method for creating a reference model consists of
three large phases:

1) capturing the essence of the abstracted system via concepts
and components;

2) identifying software modules and grouping them into the
concepts and components;

3) identifying or creating an implementation-specific design
of the abstracted system.

The approach taken in the ASRM is, however, very differ-
ent. Reverse engineering and software analysis methods were
employed on existing, fielded agent frameworks and systems to
create the ASRM. Reverse engineering is the analysis of soft-
ware systems by extracting artifacts and functionality from an
existing system [37]. Using reverse engineering techniques, one
extracts software components and their relationships through
automated analysis of a system’s source code or runtime be-
havior. Software components are basic software entities such
as classes, collections of classes, and packages. Relationships
between components are one or more interactions that exist be-
tween software components. By applying these methods, the
usual process of creating a reference model is reversed.

In this paper, reverse engineering techniques determine both
the structural and behavioral makeup of existing agent systems.

The static analysis of the software system yields the structural
components that exist in the system, and the dynamic anal-
ysis shows how and when these components are instantiated
and used. Moreover, dynamic analysis (sometimes called be-
havioral analysis) shows the runtime interactions between the
components found during static analysis [38].

1) Static Analysis: Static analysis is the analysis of software
using its source code as the primary artifact. The system need
not be executing in order to obtain the appropriate data. Instead,
source code or intermediate code is inspected to find the software
modules, data structures, data flow, and methods and metrics
appropriate to the system.

This type of analysis yields many benefits, such as code
rewriting, vulnerability detection, finite-state machine verifica-
tion, and source code repository abstraction. For purposes of
the reference model, the primary goal is to use static analysis to
produce a data repository from code that can be queried to find
the primary software subsystems. This facilitates the transition
from analyzing subject systems to identifying software modules
that might fit the overall abstract system defined by the reference
architecture.

An example of static software analysis applied to a portion
of the NOMADS [39] agent framework is shown in Fig. 2.
Fig. 2 illustrates a high-level clustering of the class rela-
tionships in NOMADS. Class relationships include class in-
heritance and method invocations between classes. These re-
lationships are clustered by weight to obtain likely subsys-
tems within the architecture. These subsystems are depicted
by light-blue octagons. Each cluster expands into a box of
class nodes, which are depicted by dark-blue ovals. The ex-
panded cluster is named N−SS−L2−FlexFeedManager, be-
cause it is a subsystem in which the FlexFeedManager class
is the “heaviest” node (contains the most relationships) in the
cluster. It happens that the FlexFeedManager is an agent man-
agement service provided by the framework, and provides in-
terfaces to other framework services [40]. As a result, one
might expect this manager to contain relationships with the

REGLI et al.: DEVELOPMENT AND SPECIFICATION OF A REFERENCE MODEL FOR AGENT-BASED SYSTEMS 577

message objects and the communications subsystem. This is
verifiable in Fig. 2 by observing the relationships between
FlexFeedManager and the DataMessage objects immediately
below it. The FlexFeedManager also contains relationships to
classes within the N−SS−L2−CommHelper subsystem, which
can be further investigated using dynamic analysis techniques
or more static decompositions such as call graphs. In this way,
static analysis data often provide insight into which features
should be exercised during dynamic analysis or via a specific
call trace.

2) Dynamic Analysis: Dynamic analysis also collects data
on software systems, but it does so by inspecting that system
during execution. This analysis varies widely by implementa-
tion, but one approach is to build a data repository of program
behavior. This repository holds information on data flow, ob-
ject instantiation, the call graph, interprocess communication,
network or filesystem I/O activity, and so on. This analysis as-
sists the production of the reference model by providing more
sophisticated justification than is provided from static analy-
sis alone. For example, static analysis relies somewhat on the
software architecture of the subject system. If the system con-
tains a lot of “dead code” or other obfuscated constructs, the
static analysis results can be inaccurate and deficient in describ-
ing the true structure of the system. Dynamic analysis inspects
the system as it is running and often breaks the system down
into “features.” These features can be analogous to the relevant
subsystems found during static analysis, such as those found
and described in Fig. 2. Moreover, dynamic analysis can obtain
data on behavior-specific aspects of the system such as thread-
ing and I/O, which could not otherwise be found simply using
static analysis techniques. Finally, dynamic analysis can assist
in cases where source code is not available for static analysis to
be performed. Static analysis decompositions often require that
one have access to the source code, or perhaps some equivalent
byte code. However, it is often the case with legacy systems that
only the binaries are available, and thus, it is not possible to
extract architectural information. However, debuggers, tracers,
and platform-dependent dynamic analysis tools trace the execu-
tion of a software system and (if the information is available)
provide a call trace. This can help reconstruct the architecture
of certain features of a system by observing how the system
behaves when that feature is executed. The methods and objects
invoked by a feature that is observed during dynamic analy-
sis are called a slice of the system. When static analysis is also
feasible for a system, slices can be mapped to the static architec-
ture decomposition to identify which subsystems are exercised
during a trace.

An example of dynamic software analysis is applied to a por-
tion of the Jade agent framework to show feature extraction. By
mapping packages and the order that the packages are invoked,
a temporal view of a scenario demonstrating an invocation point
of a functional component is generated, as shown in Fig. 3. In
this example, agent mobility in Jade is exercised, thus extract-
ing the associated runtime trace. This reveals dependencies on
the Jade Agent Management System (AMS) via a call to the
AMSService and getAMS(). The agent is migrated via a call to
doMove, and named on the new host via a call to getName.

Fig. 3. Jade mobility runtime trace.

Fig. 4. Jade mobility process view activity diagram.

For the reference model, these reverse engineering data are
used as the basis for constructing a high-level view of an agent
system. A structural and behavioral overview of the system is
constructed first from the concrete agent framework (in this
case, Jade), and then, an aggregate structural and behavioral
overview is created from this and other agent framework reverse
engineering data.

The behavioral view is constructed by mapping packages
and the order that the packages are invoked; a temporal view
of a scenario demonstrating an invocation point of a functional
component is generated, as shown in Fig. 3. The key objects and
methods are highlighted based on the code snippets to generate
an activity diagram, as shown in Fig. 4.

578 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 39, NO. 5, SEPTEMBER 2009

Fig. 5. Jade mobility logical view package diagram.

To construct the structural view, we identify cloning and se-
rialization as the “helper” functions, but most importantly, we
discover that Jade’s mobility code largely uses the same classes
as the messaging functional concept. This indicates that Jade
mobility is implemented using the messaging code base. The
primary calls that were observed in the runtime trace shown
in Fig. 3 inform the activity diagram activities and process in
Fig. 4, as well as the package diagrams depicted in the logical
view in Fig. 5.

3) Typical Results of Reverse Engineering Analysis: Re-
verse engineering analysis yields components and relationships
that provide the grounding for the construction of the refer-
ence model, as described in Sections IV and VI. Static analysis
techniques are used to obtain structural information about soft-
ware system features from source code [41]. Moreover, runtime
analysis enables design extraction by providing feature traces
that specify what source code is exercised during a feature’s
execution [42].

Two components might interact via a method call, by sharing
data, or by aggregating one another through class inheritance or
implementation; these are all examples of component relation-
ships. Components and relationships are often depicted using
an entity-relationship (ER) graph, in which components are re-
ferred to as entities or nodes and relationships are referred to as
edges between components.

One can further extract these interrelationships by identify-
ing the level of coupling (the amount of relationships) and the
type of relationships that exist between components. It is of-
ten the case in software systems that components are relatively
loosely coupled, but are locally tightly coupled. In other words,
most components do not depend directly on one another on
the whole, while related components interact to achieve their
common functionality.

Fig. 6. Abstract model of an agent system. Such systems decompose into
several layers of hardware and software that provide an operating context for
agents, situated computational process that sense and affect their environment.
Note that the relationships across layers may be n-to-1.

Collections of relationships, called clusters, are formed by
grouping components with only a high degree of coupling. This
process may be repeated any number of times by further group-
ing entire clusters based on their coupling. Software analysis
tools exist to extract and abstract data from systems in this way.
The end result is usually a hierarchical depiction of the software
system, in which clusters of clusters of components are shown.

These data may be static components such as classes and call
graphs or it may be dynamic components such as instantiation
and data flow. In either case, the hierarchical result is ideal for
identifying subsystems that exist within a software system, such
as disk access and graphic display, as well as layers (collections
of subsystems, or clusters of clusters) that comprise the system’s
architecture. For example, disk access and RAM access might
be combined as part of a larger memory management layer, and
so on. By appropriately abstracting these layers, one uses reverse
engineering techniques to make a good hypothesis to a generic
architecture (called a reference architecture) that comprises a
class of software systems, such as operating systems. In addition,
reverse engineering (RE) validates and identifies discrepancies
between this reference architecture and existing systems.

IV. AGENT SYSTEM REFERENCE MODEL: INITIAL DEFINITIONS

Software agents, sometimes called intelligent agents or
simply “agents,” are situated computational processes—
instantiated programs that exist within an environment that they
sense and affect. Fig. 6 portrays an abstract model of an agent
and its relationship with the system and environment in which
it exists. An agent actively receives percepts, signals from the
environment, through a sensor interface. Though its response

REGLI et al.: DEVELOPMENT AND SPECIFICATION OF A REFERENCE MODEL FOR AGENT-BASED SYSTEMS 579

need not be externally observable at all times, an agent may
take actions through an effector interface that can manipulate
and affect that environment. Importantly, the model does not
commit sensor and effector interfaces to specific hardware or
software structure and form, but rather generically as data flow
in and out of an agent.

Being situated in an environment is a key property of agents,
whether that environment be a virtual (i.e., a file system or
the World Wide Web) or a real world setting (i.e., a computer
network, a robotic system, or an image understanding system).
Although the focus of this paper is on software agents, this does
not preclude the possibility that an agent or collection of agents
may be embodied in the physical world, e.g., a sensor monitoring
system or a robot controller. In addition to being situated in an
environment, one or more of the following properties hold for
any agent.

1) Autonomous: Agents may perform their own decision
making, and need not necessarily comply with commands
and requests from other entities.

2) Proactive: Agents need not wait for commands or requests
and may initiate actions of their own accord.

3) Interactive: Agents may observably respond to external
signals from the environment, e.g., reacting to sensed per-
cepts or exchanging messages.

Although many agents possess two or all of these properties, it
is possible to construct agents possessing one but not the others.
However, software that is not situated or does not hold one of
these properties forms a different class of software from agents.
In particular, services, which are computational processes that
exist to provide functionality for use by other processes, do
not necessarily exhibit these properties. While by definition of
interactive property, services may have no significant ties to an
external environment. They are also infrequently associated with
autonomy and proactivity. While an agent may be or provide a
service, a service is not, in general, an agent. Other properties
that may hold of an agent include the following.

1) Continuous: Agents are typically a long-lived thread of
execution. They are not spawned and terminated for each
individual task. As described later, specific agent technol-
ogy may provide support for preservation and resuscitation
across restarts and other events.

2) Social: Many agents interact significantly with other
agents in achieving their tasks, which is a specialization of
interactive agents. Social agents may be further classified
with respect to the relationship between their implicit and
explicit priorities, preferences, and actions versus those
of other agents. Basic divisions along these lines include
self-interested, adversarial, and cooperative agents. Such
agents may utilize many protocols and forms of discov-
ery, coordination, communication, and negotiation in their
interactions, as discussed in Section VI.

3) Mobile: Some agents are not static, fixed features of the
operating environment. Robots may physically move in
the world; software agents may migrate between comput-
ing devices—temporarily pausing execution, transferring
to another host, and continuing execution there. Mobility
is further classified and described in Section VI.

Section V-C discusses several other properties in the context
of multiple agents and overall system applications. These in-
clude the level of reasoning individual agents conduct and the
sophistication of the tasks they perform.

V. AGENT SYSTEM REFERENCE MODEL:
CONCEPTS AND LAYERS

This section begins to formalize and describe concepts for
agent systems. It places agents within the context of required
infrastructure, and the larger computational and world environ-
ment. Several diagrams are used throughout this section and the
remainder of the diagram to define and explain these models.

A. Infrastructure for Building and Supporting Agents

As computational processes, agents do not exist on their own
but rather within computing software and hardware that provides
them mechanisms to execute. Many agent implementations also
require substantial libraries and code modules. Further, agents
frequently possess properties not found in traditional software,
such as mobility. Development and implementation of such soft-
ware require significant infrastructure to provide core function-
ality that agents may use in conducting their tasks.

An agent-based system comprises one or more agents de-
signed to achieve a given functionality, along with the software
and hardware that supports them. It is comprised of several
layers, as shown in Fig. 6, and is described as follows.

1) Agents implement the application; they achieve the in-
tended functionality of the system.

2) Frameworks provide functionality specific to agent soft-
ware, acting as an interface or abstraction between the
agents and the underlying layers. In some cases, the frame-
work may be trivial or merely conceptual, for example, if
it is merely a collection of system calls or is compiled
into the agents themselves. At this extreme, the frame-
work is considered “null” or empty, such as in the case
where agents are programmed directly into hardware. This
is consistent, since implementing their agents in such a
way would be a conscious decision of the agent system
designers. A virtual machine is an example of an agent
framework in the other extreme.

3) Platforms provide more generic infrastructure from which
frameworks and agents are constructed and executed.
Items such as operating systems, compilers, and hardware
drivers make up the platforms of an agent system.

4) Hosts are the computing devices on which the infrastruc-
ture and agents execute, along with the hardware providing
access to the world. This may range from common disk
drives and displays to more specialized hardware such as
GPS receivers or robotic effectors.

5) Environment is the world in which the infrastructure and
agents exist. This may include physical elements, such as
the network connections between hosts, as well as com-
putational elements, such as Web pages the agents may
access.

An agent system is simply a set of frameworks and agents that
execute in them. An MAS is an agent-based system that includes

580 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 39, NO. 5, SEPTEMBER 2009

Fig. 7. Agents and agent frameworks are often part of larger systems. Such larger systems are called agent-based systems and encompass all of the different
agents, frameworks, platforms (along with their nonagent software), and hosts needed to deliver the functionality of the system.

Fig. 8. Agents are depicted as computational processes running within frame-
works supported by platforms and executing on hosts operating together on
some network.

more than one agent. Such systems may consist of many agents
running within a single framework instantiation, or in different
frameworks, on different hosts, etc. A conceptual example of an
agent-based system is shown in Fig. 7 that extends over several
hosts. Fig. 8 gives another example of devices in the agent
system connected at the host layer via wireless networking, and
transmitting and receiving signals in the environment of the
physical world. With respect to the ASRM, communications
are abstracted at the platform layer by the operating system
and network software, e.g., routing tables. At the framework
layer, each platform has one or more executing frameworks.
Each framework instantiation then may be associated with many
currently executing agents in the agent layer.

Taken together, the hosts and platforms of an agent system
define the infrastructure that provides fundamental services and
operating context on which frameworks are constructed. Frame-
works and infrastructures mediate between agents and the exter-

Fig. 9. Examples of technologies (circa 2006) mapped onto different layers
of agent systems, as presented in Fig. 6.

nal environment, and therefore between agents, thus providing
for both execution and access to the world. Fig. 9 provides sev-
eral examples of current technology mapped onto these layers.

In general, this paper does not distinguish between instanti-
ations of elements and their type except when it is important.
For example, the distinction between an agent program’s source
code and an executing instantiation of that program is only
drawn when necessary. However, each agent system layer ex-
plicitly supports multiple entities above it—a framework may be
executing a multitude of agents, a platform may contain several
frameworks, and so on.

B. Communication Among Agents

Communication among agents is a critical aspect of many
agent systems. As such, the existing OSI (ISO 7498:1984) ref-
erence model is applicable to describing communication among
and between agents. There are several distinct ways in which
this mapping can be made. In the context of this paper, agents are
situated software processes communicating within the context
of a larger system. This means that agents are situated within a
system and make use of its communication components.

Fig. 10(a) shows the established OSI seven-layer communi-
cations model. In this model, the following layers are present.

1) The physical layer (layer 1) defines all the electrical
and physical specifications for devices and their major
functions.

2) The data link layer (layer 2) provides the functional and
procedural means to transfer data between network entities
and to detect and possibly correct errors that may occur in
the physical layer.

3) The network layer (layer 3) provides the functional and
procedural means of transferring variable-length data
sequences from a source to a destination via one or

REGLI et al.: DEVELOPMENT AND SPECIFICATION OF A REFERENCE MODEL FOR AGENT-BASED SYSTEMS 581

Fig. 10. Agent systems often fit nicely within the application layer of the OSI
reference model. A typical example is shown above; however, the agent system
is not required to reside at the layer depicted. (a) 7 Layer OSI model. (b) Agent
systems within the OSI model.

more networks while maintaining the quality of service
requested by the transport layer (layer 4). The network
layer performs network routing, flow control, segmenta-
tion/desegmentation, and error control functions. Tradi-
tional hardware routers operate at this layer, for example.
The best known example of a layer 3 protocol is the IP.

4) The transport layer (layer 4) provides transparent trans-
fer of data between end users, thus relieving the upper
layers from any concern with providing reliable and cost-
effective data transfer (e.g., TCP).

5) The session layer (layer 5) provides the mechanism
for managing the dialog between end-user application
processes.

6) The presentation layer (layer 6) relieves the application
layer of concern regarding syntactical differences in data
representation within the end-user systems.

7) The application layer (layer 7) provides services that fa-
cilitate communication between software applications and
lower layer network services so that the network can inter-
pret an application’s request and, in turn, the application
can interpret data sent from the network.

Fig. 10(b) shows one way (perhaps the most common in
practice) that the OSI layered model is related to the ASRM.
In this view, agents and agent frameworks exist entirely at the
application layer. The agent platform and host (i.e., the agent
infrastructure) interfaces with the other layers of the OSI stack,
and agents are largely insulated from needing to process infor-

mation at these layers. It is conceivable that designers of agent
systems may wish to have their agents interact with and operate
in the OSI layers 1-to-6. This option is not precluded in the
current reference model. For designers of such agents (i.e., an
agent for OSI layer 2), the agent framework needs to provide
APIs or other means for the executing agents to sense and affect
operations at these layers.

Alternative mappings between the ASRM and the OSI layers
can be made if one considers possible configurations in which
agent and agent frameworks assume the responsibilities for the
lower layers on the OSI stack. For an extreme example, one
could envision each agent as a separate entity that must com-
municate with other agents, in which case the physical layer of
the OSI reference model can be mapped directly to the sensor
interface and effector interface of each agent (i.e., Fig. 6), with
the functionality of the other layers encoded inside the agent
controller. A simple example of this case is in the situation of
robotic entities (i.e., the classical vacuum cleaner world) com-
municating stigmergically through their physical environment.

Other relevant cases for the spectrum of ASRM to OSI map-
pings include the following.

1) Protocols such as KQML, when implemented at the frame-
work or agent layer, could be used to serve a similar pur-
pose for agents as TCP/IP serves for host communications;

2) Serialization, or other encoding needed for agent mobility,
may be considered as a presentation layer functionality
and may be provided by the agent framework.

3) Individual agents could encode or encrypt their own mes-
sages, hence assuming the functionality of the presentation
layer.

4) Agent negotiation and auction protocols are special com-
munications protocols. For certain kinds of auctions, the
information flow patterns among the agents could be
viewed as message routing. Hence, agents could serve
as routers, and these protocols could be mapped to the
network layer.

This list of configurations and mappings could be extended
into a wide variety of permutations. The conclusion is that there
is no one way in which OSI can or should be mapped into
ASRM; however, certain mappings, once specified, can help
to clarify the context and semantics of agent communications
within an agent-based system.

C. Classifying Agents

The complexity of an agent, and subsequently of an MAS
built of many agents, may be viewed along at least two different
aspects.

1) Internal agent complexity: It is the sophistication of the
agent’s internal reasoning. Agents may be constructed
from simple condition–action rules to elaborate delibera-
tive models.

2) Operational abstraction: It is a necessarily informal char-
acterization of the level of problem or task which an agent
is intended to address in the world. This may range from
simple signal monitoring to human-level problems such
as medical or mechanical diagnosis support.

582 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 39, NO. 5, SEPTEMBER 2009

Fig. 11. Matrix of agent internal complexity and level of operational
abstraction.

These two aspects outline a classification of agents, as shown
in Fig. 11. Every individual agent falls somewhere in this clas-
sification. However, the two axes are independent: an agent
might perform sophisticated reasoning about a primitive phys-
ical task, or might utilize a simple mechanism to address an
abstract problem. For example, an agent may perform very so-
phisticated reasoning about low-level networking decisions, or
a very basic rule-based chat agent might answer user queries in
“natural language.” By classifying agent complexity, these axes
can also provide a complexity classification of an MAS through
an aggregation of the agents in its community.

An agent of one layer in either axis must possess capabil-
ities of the lower layers. However, agents of disparate layers
may interact freely. Further, note that these layers do not im-
ply any particular internal agent structure or implementation
preference—an agent’s implementation need not be explicitly
broken into such layers. Internally, an agent may be built in any
fashion and use any reasoning mechanisms. The following two
sections describe these axes in more detail.

1) Internal Agent Complexity: The internal complexity axis
of Fig. 11 is a layering of increasingly sophisticated agent rea-
soning mechanisms.

1) Sense/effect agents are the simplest class of agents, re-
acting directing to basic environmental stimuli. Examples
include agents monitoring smoke detectors or executing
stock market limit orders.

2) Fusion/control agents integrate multiple environmental
stimuli to create a decision. This implies at minimum a
method of weighting or prioritizing stimuli in choosing
a response. It does not imply a history or fusion of in-
puts over time. A spam filter agent judging received mail
agents by a weighted sum of several taboo word-list scans
would be such an agent.

3) Model-based agents fuse multiple inputs to produce and
evolve a model of the world and its change over time. This
may be a simple record of past observations or may incor-
porate predictions and estimations based on previous ac-
tions. For example, a just-in-time inventory monitor may
track demand over time to create a predictive model for use
in evaluating stock levels and issuing resupply requests.

4) Reasoning agents extend model-based mechanisms to plan
over multiple actions or perform a sequence of inferences.
In addition to memory for tracking and developing world
state, reasoning agents implicitly or explicitly possess
some notion of goals and a process for determining actions

that evolve the current state under the agent’s world model
to match these goals. Agents involved in multistep service
interactions, such as searching and purchasing from on-
line merchants, may have to perform such reasoning in
following the protocol.

5) Task agents, in addition to having a notion of their own
goals, model and reason on the goals of other agents. At the
end of this complexity spectrum, a task agent may interact
with a set of agents in achieving shared goals. Examples
include coordinated robot maneuvers and auction proxy
agents.

Of course, more sophisticated reasoning mechanisms are built
on more primitive foundations. Agents of a given layer therefore
incorporate the underlying layers of internal complexity.

2) Operational Abstraction: The operational abstraction
axis of Fig. 11 captures the layers of application domains with
respect to the external world in which agents may be deployed.

1) Physical agents receive raw stimuli from the physical
world as their environmental percepts. Examples include
agents that monitor physical parameters such as signal
strength on wireless networking cards, or agents that re-
ceive camera or video input as raw pixel data. Percepts
are minimally preprocessed but may be either reacted to
in that form, e.g., by a sense/effect agent, or processed
and refined, e.g., by a model-based agent. A smoke de-
tector monitor is an example of the former, and a video-
processing face detector the latter.

2) Logical agents receive primitive, abstracted input from the
environment. A user clicking an “OK” button to dismiss
a dialog window is an example of such input. An agent
that polls Web servers for the existence of or updates
to a given Web page and looks for Hyper-Text Transfer
Protocol (HTTP) 304 (Not Modified) or 404 (Not Found)
responses is an agent of the logical layer.

3) Syntactic agents operate on structured or semistructured
input with a priori fixed meaning and schema. As opposed
to a physical agent that receives raw pixel signals from a
camera, a syntactic agent may be able to parse a variety
of image or video formats. An agent that can read and
write Extensible Markup Language (XML)3 data that may
be exchanged with other agents capable of parsing and
generating the given schema is another example.

4) Semantic agents have an understanding of the primitive
elements and composition of data objects they manipulate
in their domain. In contrast to syntactic agents, seman-
tic agents may operate on syntactically unstructured data
where the elements of the data object’s structure or syntax
have a priori fixed meaning and schema, rather than the
data itself. An example is scheduling agents exchanging
calendars encoded in the W3C Ontology Web Language
(OWL).4 The syntactic structure of the content of such
documents is more free form than under an XML schema,
and much meaning may remain implicit for the agent to
infer.

3http://www.w3.org/TR/REC-xml/
4http://www.w3.org/TR/owl-ref/

REGLI et al.: DEVELOPMENT AND SPECIFICATION OF A REFERENCE MODEL FOR AGENT-BASED SYSTEMS 583

Fig. 12. Dimensions of MAS complexity.

5) Human interface or cognitive agents are situated in an en-
vironment where they work in concert with a human user.
Examples include “paper-clip” agents, interactive proof
checkers, computer-aided design (CAD)/computer-aided
manufacturing (CAM) design aids, and medical diagnosis
assistants. Presenting a graphical or other interface to the
user is neither sufficient nor necessary for inclusion in the
class of human interface agents. While many may include
sophisticated cognitive interfaces, some may interact en-
tirely through stigmergy (shared observable effects on the
environment). Rather, the key element of a human inter-
face agent is substantial, deliberate user interaction at a
significant level in the domain.

The aforementioned classifications are for single individual
agents, but have implications for MASs as well. These are fur-
ther discussed in Section V-D.

D. MAS Structure

This section provides language and concepts for describing
a system comprised of multiple agents. Although systems com-
prised of a single agent fit within this reference model, many
agent systems of interest incorporate several agents where the
goals of the agent system are achieved through interactions
between the individual agents. When properly designed, these
interactions create much more substantial functionality than that
of any single agent.

A set of more than one agent will be collectively referred to
as a group. In addition, a set of groups may also be referred to as
a group. Then, the term MAS is used to denote a group of agents
plus their supporting frameworks and infrastructure. An MAS
may consist of multiple frameworks, executing across multiple
hosts and each deploying multiple agents, each of which may
have different internal agent architectures of varying complexity.

1) Dimensions of MAS Complexity: The primary dimen-
sions for classifying MASs are shown in Fig. 12. These axes
position systems based on the number of agent instantiations
they include, the internal complexity of these agents, and the
number of different types of agents. Classifications of internal
agent complexity are discussed in Section V-C. Based on these
dimensions, the following terms are defined to describe common
types of MASs.

1) Monolithic system: It is an agent system consisting of a
single agent of high internal complexity. Such systems are
close to traditional software, but incorporate notions of

agent software such as autonomy, proactivity, and conti-
nuity. Many are based on applications of AI topics such as
machine learning and logical or probabilistic deduction.
Proxy agents that conduct tasks for the user such as scan-
ning the World Wide Web for prices and making purchases
to fill given specifications often fall under this category.

2) Median system: Many MASs contain a set of moderately
complex and heterogeneous agents. This approach to con-
structing agent systems is common in many domains such
as robotics, command and control, and personal assis-
tants. Although it is not required, these systems often em-
ploy mechanisms to facilitate coordination, cooperation,
and resource sharing that enable efficient and robust goal
achievement.

3) Swarm system: It is an MAS comprised of many agents,
often of a single or several highly similar types, and fre-
quently of low complexity. Individual swarm agents typi-
cally act in very simple ways, with interesting overall sys-
tem behaviors arising as the aggregate of many repeated
interactions through the large number of agents present.
Swarms provide for robustness and scalability due to a
large degree of redundancy and the ability to introduce
more agents as necessary with relative ease.

Note that the aforementioned systems are presented as exam-
ples and that there are certainly other possible systems architec-
tures for MASs.

2) Structured Groups of Agents: The following terms are
specializations of the generic group concept, based on the rela-
tionship between the goals and behaviors of agents and groups
of agents.

1) A team is a group with a single or small number of com-
mon goals. Frequently, each agent or group plays a partic-
ular role in solving a larger problem. These may include
leadership and manager roles. However, such structure is
not necessary. For example, a team may also be a swarm
of homogeneous agents, each contributing in similar ways
to the larger functionality.

2) An organization is a group that interacts according to
some structure, such as a hierarchy. Each agent or group
has a goal that may be independent of but not in conflict
with the goals of other agents and groups. Frequently,
the organization has a common overall goal, with each
member working to achieve subgoals of it.

3) A society is a group that has a common set of laws, rules,
policies, or conventions that constrains behavior. Agents
and groups contained therein do not necessarily have any
goals in common and may have goals in conflict.

4) An agency is a group that specializes in providing exper-
tise or enabling a service in a given domain. There may
be constraining policies, e.g., access control mechanisms
or resource scaling, and these agents and groups may be
competing.

Typically, these terms also have implication on the quantity of
agents in the group. For example, teams are often groups within
an organization and organization groups within a society.

3) Communication in MAS Layers: MASs are comprised of
several communication and interaction layers corresponding to

584 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 39, NO. 5, SEPTEMBER 2009

Fig. 13. Communication may occur at multiple layers within an agent system.
At each progressive layer, communication is rooted on and abstracts that of the
underlying layers.

the layers described in Section V-A, as shown in Fig. 13. Phys-
ical resources in the environment layer, such as cables, wireless
signals, and network cards, allow devices in the host layer, the
dashed ovals, to exchange network traffic. This is abstracted at
the platform layer by operating system and network software
as routing tables. At the framework layer, each platform may
have one or more executing frameworks, denoted by smaller,
dashed ovals. Typically, these instantiations may pass messages
between each other, as shown by the lines between framework
instantiations. Some agent systems may be equipped with frame-
work gateways allowing the sharing of information between in-
stantiations of different frameworks. In turn, these inter- and
intraframework links provide for agents within framework in-
stantiations to communicate.

VI. AGENT FRAMEWORK FUNCTIONAL CONCEPTS

This section presents a view of an agent system as a set of ab-
stract functional concepts that support overall system execution.
For example, security and mobility are two abstract functional
concepts (among others) described. However, before beginning,
two comments are in order. First, our use of the rather abstract
term “concept” here is deliberate. The more concrete (and per-
haps more familiar) term “component” could be used, but this
term is somewhat misleading because a function often does not
correspond directly to what engineers might think of as a com-
ponent, i.e., a clearly delineated piece of the system. Instead,
a functional concept is something that emerges out of complex
interactions between pieces of software and hardware located
in different layers of the agent system.

Second, this section makes few prescriptions about whether
and how each functional concept is implemented. The way in
which functional concepts are instantiated may vary signifi-
cantly in structure, complexity, and sophistication across differ-
ent agent system implementations. Indeed, some agent systems
may not even possess some of the functional concepts described.
The aim here is to describe what the function is in abstract terms
so that one can determine if the function exists in a given system,
or to verify its existence if it is claimed to exist within a given
system.

A. Agent Administration

Definition: Agent administration functionality: 1) facilitates
and enables supervisory command and control of agents and/or
agent populations and 2) allocates system resources to agents.
Command and control involves instantiating agents, terminat-
ing agents, and inspecting agent state. Allocating system re-
sources includes providing access control to CPUs, user inter-
faces, bandwidth resources, etc.

Agent administration functionality may be implemented in
various ways. For example, the framework may perform all the
administration functions directly, or there may be (multiple)
agent(s) in the agent layer that perform agent administration
functions by commanding and controlling other agents, or there
may be elements of both approaches in a given system. For
convenience of exposition later, the term “administrator” encap-
sulates all the administration functions although administration
functions may not be necessarily implemented with a single
administrator.

To further facilitate the exposition of the following process
model, consider as an example a hypothetical system that uses
agents to monitor message traffic on a communication network.
The number of agents required to perform adequate monitoring
may be contingent upon the complexity of the network topology
or the priority of monitoring relative to other system goals. As
both the network topology and priority changes, an administra-
tor is employed to manage the network monitoring agents.

Process model: Agent administration functionality is de-
scribed by the following set of processes.

1) Agent creation: It is the act of instantiating or causing the
creation of agents. In the example before, the administrator
may determine that there are too few network monitoring
agents to adequately maintain a minimum level of secu-
rity. Therefore, new network monitoring agents should be
created.

2) Agent management: It is the process by which an agent
is given an instruction or order. The instructions or orders
could come from human operators, or from other agents.
For example, if it is determined that the greatest security
threat is over HTTP traffic, the administrator may request
that the network monitoring agents focus their analysis on
HTTP traffic.

3) Resource control: It is the process by which an agent’s
access to system resources is controlled. For example, the
administrator may determine that security is of less prior-
ity than CPU usage. Therefore, it can reduce the available
CPU time of the network monitoring agents.

4) Agent termination: It is the process by which agents are
terminated (i.e., their execution is permanently halted).
For example, the administrator might determine that there
are too many network monitoring agents and decide to
remove these in saturated regions of the network.

B. Security and Survivability

Definition: The purpose of security functionality is to prevent
execution of undesirable actions by entities from either within
or outside the agent system while at the same time allowing

REGLI et al.: DEVELOPMENT AND SPECIFICATION OF A REFERENCE MODEL FOR AGENT-BASED SYSTEMS 585

execution of desirable actions. The goal is for the system to be
useful while remaining dependable in the face of malice, error,
or accident.

Process model: Security functionality is described by the
following processes.

1) Authentication: It is a process for identifying the entity
requesting an action. Common examples include user-
name/password credentials and use of public/private keys
for digital signatures.

2) Authorization: It is a process for deciding whether the en-
tity should be granted permission to perform the requested
action. A common example in file system security is main-
tenance of a permission list for each file, which specifies
the allowable actions for a given user. Another example
includes a Web server denying a request to to view a page,
due to the user whose credentials were used having insuf-
ficient permission.

3) Enforcement: It is a process or mechanism for preventing
the entity from executing the requested action if authoriza-
tion is denied, or for enabling such execution if authoriza-
tion is granted. A common example for preventing access
to information is to encrypt it. Permission to access the
information is granted by providing the entity a decrypted
copy or providing the entity the means to decrypt it, e.g.,
the encryption key.

Some general technologies for achieving security include au-
thorization models and mechanisms, auditing and intrusion de-
tection, cryptographic algorithms, protocols, services, and in-
frastructure, recovery and survivable operation, risk analysis,
assurance including cryptanalysis and formal methods, and pen-
etration technologies including viruses, Trojan horses, spoofing,
sniffing, cracking, and covert channels.

C. Mobility

Definition: Mobility functionality facilitates and enables mi-
gration of agents among framework instances typically, though
not necessarily, on different hosts. The goal is for the system
to utilize mobility to make the system more effective, efficient,
and robust.

Mobility functionality is useful if, for example, the power
level is low on a particular host and an agent may wish to
migrate to another host to stay alive, or, an agent may need to
communicate at length with an agent on another host, and so,
it would be more bandwidth-efficient for the agent to migrate
hosts rather than to send the communications over the network.

As shown in Fig. 14, mobility capabilities exist along three
axes. The mobile state axis represents the capability of the state
of execution (such as the instruction counter) to migrate with
the agent. The mobile code axis represents the capability of code
(byte code or platform specific) to migrate with the agent. The
mobile computation axis represents the capability of the state of
data members to migrate with the agent.

The four rounded corners in the figure represent how a frame-
work can be classified, based on the mobility support it provides.
Process migration refers to the mobile state and mobile compu-
tation support, weak mobility refers to mobile code and mobile

Fig. 14. Axis of mobility features adapted from [43].

computation support, and strong mobility refers to mobile code,
mobile state, and mobile computation support. All classifica-
tions include mobile computation support. Agent data migration
refers to support only for mobile computation support, and is the
classification most common in contemporary agent frameworks.

Process model: Mobility functionality is described by the
following processes.

1) Decision procedure for migration: It is a process for de-
termining whether or not a migration should occur. The
decision procedure can be passive or active. Passive mo-
bility occurs when the decision to migrate is made outside
the agent. For example, another agent, framework, host,
or management service may determine when and where
the agent shall migrate. An example of passive mobility is
the mobility service provided by the Cougaar agent frame-
work. By contrast, active mobility occurs when the agent
is in control of its own mobility, and decides when and
where it shall migrate on its own. An example of active
mobility is the internal agent mobility functionality pro-
vided by Jade. In either case, it is decided that the agent
shall migrate, and a suitable destination is chosen.

2) Deregister, halt, and serialize: Once an agent has decided
(or been notified) that it is migrating, it must deregis-
ter from all of the directory services on the framework
instantiation with which it has registered. Then, it halts
execution, and is serialized.

The serialization process involves persisting the agent’s
data and/or state into a data structure. This data structure
is converted to packets or written to a buffer to prepare the
agent for migration. In an object-oriented language, the
data that must be stored are the data members of the object.
Some frameworks may support storing other information,
such as the point at which execution stopped.

3) Migrate: It is the process by which the serialized, nonex-
ecuting agent leaves the source framework instance and
arrives at a destination framework instance. This does not

586 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 39, NO. 5, SEPTEMBER 2009

necessarily imply that the agent has left the host; instead,
the agent is changing the framework instance on which
it is executing. Recall that a host and platform may be
housing multiple framework instances, thus allowing for
migration within a particular host. According to [44], mo-
bility is also recognized as an atomic function. As a result,
agents in a mobile state are not executing and cannot act
until the agent resumes its behavior at the destination.

There is no requirement that an agent’s destination
framework instance is different from its source frame-
work instance, i.e., an agent could serialize and “migrate”
to itself. However, an agent system as a whole possesses
mobility functionality if and only if it allows for agents to
migrate among different framework instances.

4) Deserialize, reregister, and resume: Corollary to serializa-
tion is the process by which the agent, having arrived at
its destination, is converted from its serialized state into
the data structure that it existed as on the sending host.
Then, the agent reregisters with the appropriate directory
services in use by this framework and resumes execution.
As noted in the mobility description, the agent can ei-
ther resume execution where it stopped on the sending
framework instantiation or restart from the beginning, de-
pending on the support given by the framework.

Throughout the mobility process, exceptions can occur caus-
ing the mobility to fail. For example, during the migration pro-
cess, the target host may refuse the agent, or network communi-
cation with the destination host may go down. Handling a failed
migration is implementation specific. It is left to the system
implementation to handle and recover from such exceptions.

D. Conflict Management

Definition: Conflict management functionality facilitates and
enables the management of interdependencies between agents
activities and decisions. The goal is to avoid incoherent and
incompatible activities, and system states in which resource
contention or deadlock occur.

As an example, a framework may allow designation of su-
perior/subordinate relationships between agents and provide
generic conflict resolution services based on these relation-
ships. The Cougaar framework does this. Similarly, a frame-
work may provide a multiagent task planning language, such as
TAEMS [45], that can be used to reason about the interactions
between agent actions and to detect plan conflicts.

Process model: Conflict management functionality is de-
scribed by the following processes.

1) Conflict avoidance: It is a process or mechanism for pre-
venting conflicts. Examples of such processes include
multiagent planning algorithms (both online and offline)
that take care to produce action plans that do not have
conflicts.

2) Conflict detection: It is the process of determining when
a conflict is occurring or has occurred. One example in-
cludes a plan execution monitoring algorithm that is able
to sense when the actions of agents are in conflict. Another
example includes performing logical inference over differ-

ent agents beliefs to determine when they are inconsistent
with one another.

3) Conflict resolution: It is the process through which con-
flicts between agent activities are resolved. Negotiation,
mediation, and arbitration are common mechanisms for
facilitating conflict resolution.

Some general technologies for conflict management in agent
systems include argumentation and negotiation, distributed con-
straint reasoning, game theory and mechanism design, multia-
gent planning, norms, social laws, and teamwork models.

E. Messaging

Definition: Messaging functionality facilitates and enables
information transfer among agents in the system.

This concept is associated specifically with the mechanisms
and processes involved in exchanging information between
agents. Although information exchange via messages can and
often does occur between other parts of the system—for exam-
ple, between an agent and its framework, between frameworks,
between a host and its platform, etc.—such information trans-
fer is not included because it is in a sense at a lower level.
The concept of messaging used here is at a higher level than that
associated with network traffic or interprocess communications.

Messaging involves a source, a channel, and a message. Op-
tionally, a receiver may be designated, and models in which
messages do not have a specific intended receiver are accept-
able. For example, signaling in the environment like smoke
signaling, a light flashing Morse code, etc., are examples of
messaging where there is no designated receiver. Many other
functional concepts such as conflict management and logging
may utilize messaging as a primitive building block. Other func-
tionality in support of concepts such as semantic interoperabil-
ity and resource management may be necessary to practically or
effectively conduct messaging. However, messaging is defined
here as a stand-alone concept of its own right.

Process model: The functionality is described by the follow-
ing processes.

1) Message construction: It is the process through which a
message is created, once a source agent determines its
wish to deliver a particular message chosen from a finite
or infinite set of messages. No commitments are made here
in regard to the form, structure, or content of a message.
For the purposes of this model, it is sufficient to discuss
messages as an abstract object. The information to be
delivered is simply the fact that a particular message was
chosen from the set of all possible messages.

2) Naming and addressing: It is a mechanism for labeling the
message with its intended destination or route. Directory
white page services are a common mechanism to facilitate
this function. Broadcast, multicast, and group messaging
also all fit within this model.

3) Transmission: I is the actual transport of the message
over the channel. This may be a one-shot transmission
or a continuous stream. One common model of interhost
agent messaging involves going through the platform to
the host’s network hardware, then out into the environment
(via wire or air), and back in symmetrically to the receiver.

REGLI et al.: DEVELOPMENT AND SPECIFICATION OF A REFERENCE MODEL FOR AGENT-BASED SYSTEMS 587

4) Receiving: It is the process for acquiring the transmitted
information so that is usable by the receiver. This may be
as simple as pulling the message off of a queue or more
elaborate, e.g., going through a translator.

Some other areas of interest in messaging functionality in-
clude notions of best effort delivery, quality of service (QoS),
and guaranteed delivery/timeliness.

F. Logging

Definition: Logging functionality facilitates and enables in-
formation about events that occur during agent system execution
to be retained for subsequent inspection. This includes but does
not imply persistent long-term storage.

Logging is a supporting service that provides informational,
debugging, or management information about the agent sys-
tem as it executes. It can be a centralized service or distributed
among the agents (wherein each agent performs its own log-
ging). Logging services are often used to make note of system-
wide information or warnings produced by the agent or the agent
system.

Process model: Logging functionality is described by the
following processes.

1) Log entry generation: It is the process by which informa-
tion to be logged is created. For example, a log entry may
be a note of immediate importance regarding the system:
for instance, a damaged sensor or low battery life. The
entry could be generated whenever an agent has entered a
particular state or generated regularly to aid system status
monitoring. While these entries have different meanings
and priorities, they can be generated in the same manner.
Log entries often include type (informational, warning,
critical, among others) or priority (for instance, priority
1–5). The entry and any attributes are packaged into a
data structure for writing.

2) Storing log entry: Log entries are stored in a variety of
ways at the choosing of the implementation of the agent
system. For example, log entries can be written to a disk
file on a host, written to a network stream destined for
another agent, simply stored in memory for debugging
purposes, or written to a generic stream with a defined
destination. The log message is optionally formatted, often
into a textual description or a database format such as
XML.

3) Accessing log entry: The logging functionality must pro-
vide a mechanism for a human user or an agent to access
the generated log entries. If the entry contained any at-
tributes, such as priority or type, they are also accessible.
For example, if the agent is in a critical state, an agent sys-
tem management service or human intervention may be
alerted to this by accessing the log information. A log filter
may also be available for facilitating listing and reading
the log entries.

G. Directory Services

Definition: Directory services functionality facilitates and en-
ables locating and accessing of shared resources.

A directory is an abstraction allowing the naming and reg-
istration of resources enabling subsequent locating of and ac-
cess to the resources. Examples of shared resources located and
accessed through a directory service include other agents or
services. Directory services are often used to locate agents and
services with specific characteristics.

Process model: Directory services functionality is described
by the following processes.

1) Naming: It is the process by which resources are assigned
identifiers so that they may be indexed and located. This
process can be fairly complex by supporting group names,
transport addresses, dynamic name resolution, and other
complex features [46].

2) Notification: It is the process by which new resources are
added to and deleted from the directory. As resources dy-
namically become available and unavailable, the directory
is kept up-to-date via this notification process to maintain
an accurate picture of the resources available in the sys-
tem. When a new resource is added, the process often
includes recording a description or characteristics of the
resource and a method for accessing it.

3) Query matching: It is the process by which resources are
looked up in the directory. This process often occurs in
response to external requests for a resource and returns
information about how to access the requested resource.
Queries can be specified in terms of the name of the service
(e.g., white pages directory) or by a service description
(e.g., yellow pages directory) [47].

VII. USING THE ASRM

Given the aforementioned terminology and definitions, we
now show the practicality of the reference model by using it to
compare agent frameworks and examine deployed systems built
with agent technology.

A. Agent Framework Mappings to the Reference Model

Ideally, all existing agent frameworks map directly to the
reference model from an architectural perspective. Because
of the number of diverse frameworks in existence, each with
its own functional goals and architecture, it is not feasible to
compare all of the existing frameworks to the reference model;
however, an analysis of a representative subset is presented in
this section. The following is the general behavior that is used
to exercise the individual frameworks. Any modifications are
noted appropriately.

Two static agents s1 and s2 are created. One of the static agents
s1 creates a mobile agent m. It is the responsibility of m to de-
liver a message from s1 to s2 . Mobile agent m then migrates from
the framework instantiation on which s1 resides to the framework
instantiation in which s2 exists. Once the message is delivered, m

returns to s1 and s2 is terminated. Upon arriving back at s1 , m is
terminated, and finally, s1 is terminated.

This behavior tests the migration and message passing as-
pects of several agent frameworks. Typically, these compo-
nents also exercise the other components described in the ref-
erence model. For example, migration requires a search of the

588 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 39, NO. 5, SEPTEMBER 2009

Fig. 15. A-Globe migrating agent m before migration. A-Globe agents mi-
grate using a procedure consistent with the ASRM mobility functional concept.

directory service, has security concerns, needs to deal with agent
management functions, and involves coordination. Likewise, the
message passing aspect generally exercises communications and
security. A brief overview of the scenario from a dynamic analy-
sis is first presented, followed by in-depth analysis highlighting
components and tracing execution.

Execution of this behavior is traced using the Extensible Java
Profiler (EJP) tool. From these traces, one draws conclusions
about the framework’s architecture and makes mappings to a
reference architecture (and thus to the reference model). Sev-
eral figures are included in the next few analysis sections. These
figures show what amounts to the raw output of EJP. The run-
time trace is clearly recognized in the tree structure depicted.
Every node represents a function call that was performed by the
parent. The percentage of total time spent executing a particular
call is shown as a percentage after the function name. Some
of the calls are removed for the sake of clarity. These include
the standard Java library calls. Lastly, equivalent and consec-
utive calls are commonly grouped together as a single method
invocation.

1) A-Globe: This A-Globe analysis is broken up into two
behaviors for depth of analysis. One part involved message
passing and the other involved migration—thus deviating from
the general scenario. Combining these results in the generic
behavior depicted for framework analysis.

a) Overview: An analysis of an agent frameworks begins
with the instantiation of the framework itself. A-Globe uses the
platform class as the root of its framework. The platform class
controls containers that are for all intents and purposes agents.
The AgentContainer acts as the interface between local agents
and the framework instantiation. Its main job is to provide agent-
specific resources such as a MessageTransport services. An
AgentManager is used to manage the agents and is seen in the
following figures for the specific agents.

The migrating agent before migration is seen in Fig. 15. The
general procedure for a migrating agent is to run (in this case,

the migrating agent does nothing), and then migrate using the
agentFinished function. It migrates to the second instanti-
ation of the agent framework. Again, the agent does nothing
and is terminated by the agent framework instantiation in the
agentFinished function.

b) Mapping to agent framework functional concepts: An
examination of the A-Globe [9] figures reveals the manner in
which the architecture of A-Globe maps to the idealized agent
framework. First and foremost, the physical world and infras-
tructure are implicit. The Java Virtual Machine is the only visible
sign of a platform. It occupies the root nodes through any thread
instantiations in the trees.

The framework is represented by the platform class and
its corresponding AgentContainer. The framework is always
used for the agent to access system or physical world resources.
The platform’s agent container provides shared objects, a mes-
sage transport service, a directory service, a logger (not shown),
and various other resources to the agents. An AgentManager
manages the agents on the local instantiation of the framework.
It takes care of the migration aspect.

To begin, consider the migrating agent. It was not imple-
mented to perform any task on the local host besides migration,
so the run method does very little. When it is time to migrate,
the agentFinished function is called. This function uses XML
to serialize the data and sends it via the AgentMoverService
that is part of the AgentContainer. This is shown in Fig. 15.
When the migration agent arrives at the second framework in-
stantiation, it is recreated by the AgentManager and executed.
Again, it does nothing and is then deregistered from the directory
terminated.

There is evidence that there exists a MessageTransport
service within the framework that oversees message passing.
This MessageTransport service registers possible message re-
ceivers, and then calls a function similar to the handleMessage
function.

Overall, migration and message passing are the same as in
the idealized agent framework. In a combination of these exper-
iments, s1 generates a message and gives it to the framework
to give to m. Migrating agent m then receives the message
and migrates to the instantiation of the framework where s2
resides. After arriving, m passes the message along to s2 . Fi-
nally, all framework instantiations and agents are terminated.
The framework also makes available all of the important com-
ponents mentioned in the reference model in addition to the
migration, communication, and logging components exercised
in these experiments.

2) Jade: The Jade [11] agents implement the messaging and
migration scenario by using a TerminatorAgent that is re-
sponsible for creating agents and terminating the platform upon
completion. The TerminatorAgent creates two static agents
on one host that send a message to each other. Thus, there exists
s1 and s2 on the first host. The TerminatorAgent is the mobile
agent m, and travels to the second host where it repeats same
task on new static agents s3 and s4 . These two new agents serve
the same purpose as the original s1 and s2 agents; the entire
task is repeated in order to analyze the interactions between
the TerminatorAgent and the agent management subsystem

REGLI et al.: DEVELOPMENT AND SPECIFICATION OF A REFERENCE MODEL FOR AGENT-BASED SYSTEMS 589

Fig. 16. Dynamic analysis data for Jade static agents. Here, the agent is
initialized and run by the framework.

when creating and terminating agents. This behavior is dis-
cussed elsewhere in the ASRM. We chose to do this because
it yields data on several ASRM functional concepts during the
same execution trace, which enables us to inspect relationships
and dependencies that exist between functional concepts in each
agent framework.

a) Overview: The Jade framework is composed of several
classes, including Boot and the entire jade.core package. The
AgentContainer is used as an interface between the agents and
the framework. Additionally, resources are delegated through
the framework by way of a ServiceManager. The static agents
are very interesting in the case of Jade because the progression
of message sending is made obvious. All of the static agents are
the same and appear as in Fig. 16.

b) Mapping to agent framework functional concepts:
In Jade, the environment and host layers are implicit
while the Java Virtual Machine (JVM) represents a por-
tion of the platform. When the Jade framework is started,
an AgentContainer is created that interfaces the frame-
work with all local agents. Inside the AgentContainer, the
other agents are started. The Jade framework also contains
an AgentManagementService, a MessagingService with
a well-defined and FIPA compliant Agent Communications
Language (ACL), an AgentMobilityService class that over-
sees mobility, and a ServiceManager that manages local re-
sources. A directory service is hidden in the jade.domain.ams
package.

First, message passing is examined in detail. Two
JadeCommunicationAgents are created that send messages
to each other, and then terminate. In Fig. 16, the static agents
take advantage of Jade’s planning language that includes behav-
iors that are defined to occur once or be cyclic. The agent sends
a message by creating an ACLMessage, contacting the directory
service with the getAMS function call, and using the commu-
nication service to send. This is a OneShotBehaviour and
occurs only once per lifetime. A CyclicBehaviour attempts
to receive messages and terminate, but is left unexpanded in the

Fig. 17. Robot messaging use case.

figure. Thus, message sending and receiving are made clear in
the static agent figure.

The migrating agent exhibits some interesting properties both
before and after migration. The agent creates the static agents,
and then attempts to clone itself. Migration is processed through
the AgentMobilityService. The directory service is certainly
contacted in this process. The first function call regenerates
the agent and it proceeds in a similar fashion by creating the
communication agents.

Jade contains a framework consisting of all of the ASRM
components.5 Agents are given the freedom to operate au-
tonomously, but are monitored through an AgentManager. The
other components are also present explicitly; security is the only
exception that is not obvious in the dynamic analysis, though it
is implicit through the JVM and the API.

B. Case Studies

1) Situated Agent Example—Robot Soccer: Agents are typ-
ically situated within an environment and are able to interact
among themselves and with that environment through its appro-
priate framework and infrastructure. An example is a model of
agents represented by robots, whose goal it is to play soccer in a
league. The agents in this case vary by size and complexity, and
may have storage constraints based on the rules of the particular
league. This example is an analysis of the potential behavioral
interactions of situated agents such as robots in the context of
the ASRM concepts and agent system layers.

a) Messaging scenario: A typical agent messaging sce-
nario in the robot soccer domain is a situation in which an agent
senses a condition that merits communicating. In this example,
the agent senses that it has successfully acquired the ball. This is
critical information to pass along to the team to inform them of
the condition and begin the planning process of making a play.
In addition, it is possible that some agents have lost sight of the
ball and may have become disoriented on the field; an informa-
tive message from a teammate is also helpful in this situation.
In either case, it is possible to both send a message to a single
agent or to a set of agents (see Figs. 17–19).

b) Sending agent: The sending agent senses a condition
that merits sending a message. In this case, the agent X “has the
ball.” To this effect, the agent decides to send a message to its
teammates.

5However, the security and mobility components cannot be employed con-
currently.

590 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 39, NO. 5, SEPTEMBER 2009

Fig. 18. Messaging activity diagram.

Fig. 19. Messaging sequence diagram.

c) Sending framework: The sending framework API is
called for sending a message. The message body is constructed
and wrapped in an envelope that contains logistical information
such as addressing. In this case, the body of the message is
“agent X has the ball” and the address is that of each of agent
X’s teammates.

d) Sending platform: The operating system and network
driver receive a low-level request to build a message that is
identical to that mentioned previously. The message is broken
up into packets that are sent individually.

e) Sending host: The network card physically transmits
the packets through the network pins or over the wireless an-
tenna.

f) Environment: The environment in this scenario is the
actual network. The packets are transmitted over the medium.

At this point, the process is reversed and the message is
received.

g) Receiving host(s): The network card physically re-
ceives the packets from the network or via the wireless antenna.

h) Receiving platform(s): The packets are received by the
operating system and network driver, and the packets are com-
bined into a low-level message.

i) Receiving framework(s): The framework call is initi-
ated by the agent and contains an API to check with the network
interface to determine if a message is incoming. This could also
be achieved via an interrupt.

j) Receiving agent(s): The agent receives the message via
the framework API call and interprets it according to its decision
cycles. In this case, the agent learns that agent X “has the ball.”

Fig. 20. Robot conflict management use case.

Fig. 21. Conflict management activity diagram.

k) Conflict management scenario: There are a number of
possible scenarios even in the context of robot soccer where
conflict resolution becomes necessary. Moreover, there are a
number of ways to resolve such a conflict, and the appropriate
method is usually a decision made by the agents as part of their
plan and decision cycles.

Particularly, conflict resolution falls into two categories: cen-
tralized and decentralized. In centralized conflict resolution,
there exists a management agent (coach in this context) that can
“see” the entire field and has a plan for the entire team. In this
case, the manager simply makes a decision and dictates/suggests
the next actions for the team. More often, however, agent conflict
resolution is decentralized and it is up to the agents in conflict
to come to a resolution.

From the command and control context, the process of con-
flict resolution is broken into escalating stages: negotiation, me-
diation, arbitration, litigation, and confrontation. This scenario
concentrates on the first three stages as an ongoing process.

In this scenario, two teammates are “fighting” over possession
of the ball. Clearly, this is detrimental to their own goals, and
therefore, a decision must be quickly made in a decentralized
way. It is assumed that there is no “coach” to help them, but
if there was, the resolution would be a decision process by the
coach followed by message passing to the agents in conflict (see
Figs. 20–22).

REGLI et al.: DEVELOPMENT AND SPECIFICATION OF A REFERENCE MODEL FOR AGENT-BASED SYSTEMS 591

Fig. 22. Conflict management sequence diagram.

In this situation, the two agents have entered a conflicting state
because they are both fighting for the ball. If the two agents are
teammates, then they share a common goal. In this case, it is
unlikely that the agents wish to continue “fighting” for the ball
or even to seek arbitration to resolve the conflict. Instead, the
two agents negotiate or collaborate with their confidence levels
of achieving that goal. If one agent feels more likely to achieve
the goal, then the other agent backs off and allows the more
confident agent to take the ball. This confidence might be a
confidence to score, a higher battery life, or an ability to run
faster on the field. In any case, the other agent likely replans
and positions itself in such a way as to assist the more confident
agent, because they do indeed share a common goal.

Should negotiation result in indecision, and each agent has
an equal confidence level, then the conflict must be resolved by
the team or by a coach. This could be done via a group decision
such as voting, followed by message passing to the agents in
question.

If, however, the two agents have conflicting goals and are
opponents, a different procedure is necessary. In fact, there is
no negotiation or mediation in this scenario. Instead, either a
referee needs to call the play dead (a form of arbitration), or the
two agents are left to fight for the ball.

l) Security and survivability scenario: Because of the
rules of the robot soccer league, security is enforced among
the agents. For example, messaging occurs over discrete fre-
quencies, and it is not permitted for agents to “eavesdrop” on
opponents’ communications nor to tamper with them. It is not
legal for a robot to “pose” as a teammate of its opponent, and
so on. Therefore, security is not realistic in this model and is
appropriately omitted.

However, in similar scenarios, these assumptions are clearly
not appropriate. For example, if robots are fighting on a battle-
field, security could not be imposed by a league as rules. The
security concepts of authentication, authorization, and enforce-
ment (encryption, etc.) would be exercised during every agent
interaction. In this way, security functionality can be “plugged
in” to many of the other use cases shown here.

As in other examples, the agent begins by deciding that it
wishes to execute a particular plan or functionality; for example,

Fig. 23. Security use case.

it wishes to communicate with a group of agents or migrate
to another host. This functionality is protected through some
controlling authority, which could be a group of agents acting
in a decentralized way (through voting, for example) or through
a more centralized system such as a certificate authority (CA).

However, the agent authenticates itself with the controlling
authority by sharing credentials such as a username and a pass-
word. This information is validated and the authentication stage
completed. If authentication is successful, an agent then enters
the authorization state, in which the controlling authority de-
termines if the agent has the appropriate permissions or status
to execute the desired functionality. If so, authentication passes
and the agent is allowed to execute. If not, the policy is enforced
and the agent is unable to execute. This can be achieved in a
number of ways, and is often affected through the use of en-
cryption keys (see Fig. 23). This process is illustrated in more
detail in Figs. 24 and 25.

m) Mobility scenario: Similarly, mobile code is not of-
ten found in the robot soccer domain, but is certainly central
to many situated agent systems. In general, agents migrate by
serializing their state that is subsequently transported to another
agent framework instance, as defined by the reference model
and illustrated in Fig. 26.

At an activity level, an agent uses its sensor and effector inter-
faces to determine that migration is necessary and feasible. This
could be facilitated through a mediating party or independently
through the agent’s own decision cycles. Once the decision has
been made to migrate, the agent is serialized by the framework,

592 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 39, NO. 5, SEPTEMBER 2009

Fig. 24. Security sequence diagram.

Fig. 25. Security activity diagram.

transported through the network as appropriate, and deserialized
at the destination. This is illustrated in Fig. 27 and described in
detail in Fig. 28.

2) Situated Agent Example—Secure Wireless Agent Testbed
(SWAT): The SWAT [48] is a unique facility to study integra-
tion, networking, and information assurance for next-generation
wireless mobile agent systems. It integrates:

1) mobile agents;
2) multihop, mobile ad hoc wireless networks (MANETs);
3) security and information assurance.

Fig. 26. Mobility use case.

Fig. 27. Mobility activity diagram.

SWAT’s agent-based applications are implemented in Java
and have been tested with the EMAA [10] agent framework.
This section details how it implements the core components of
the ASRM.

a) Messaging: Messaging services are provided by the
EMAA framework. These services are used to support commu-
nications among application agents that provide end-user tools
such as a whiteboard, voice over IP (VoIP), GPS tracking, and
other components.

b) Scenario: In order to accomplish the distribution of
real-time GPS data, each node that receives GPS input then
securely sends this information to all other hosts on the network.

REGLI et al.: DEVELOPMENT AND SPECIFICATION OF A REFERENCE MODEL FOR AGENT-BASED SYSTEMS 593

Fig. 28. Agent mobility and migration sequence diagram.

Fig. 29. SWAT messaging use case diagram.

Fig. 30. SWAT messaging sequence diagram.

In order to minimize network traffic, a GPSProvider agent uses
a synchronized hashtable containing hostnames and the status
of the last message sent. The GPSProvider encrypts the data
before creating a CAAgent to convey the data by migrating to
the target host, as shown in Fig. 29. The messaging process is
outlined in Fig. 30.

Once the GPS data reach the remote host, then that host
decides, based on the whiteboard parameters, how to display
the data.

c) Mobility: Agent mobility is handled strictly through
the EMAA framework services.

d) Scenario: In the course of transporting GPS data, the
CAAgent must migrate from one host to another. On a MANET,

Fig. 31. SWAT mobility sequence diagram.

this implies a constantly shifting network topology. In order to
maximize the agent efficiency, the CAAgent rechecks its path at
every host it passes through. Mobility is detailed in Fig. 31.

e) Security: The security manager details group member-
ship management, as well as a directory service (agent lookup,
group membership lookup, etc.). This security manager also
handles all of the encryption/decryption services. There is also
a CA that gives out private keys and a security mediator (SEM)
that is used for revocation. In short, each host only has half of
the necessary private key, so it must contact the SEM for the
other half. The SEM responds unless the host was revoked. In
such a way, messages can still be sent through revoked hosts
because they can pass them along without being able to decrypt
them.

f) Resource management: SWAT includes a service reg-
istry that distributes and lists available resources. This registry
can be made global such that agents can query the central reg-
istry to determine where a particular resource is located. Items
in the registry can be looked up by name or description.

SWAT implements these services directly, as they are not
provided explicitly in the agent framework itself.

g) Scenario: In the course of delivering GPS data, a
CAAgent must query the service registry to find the proper
target of its data once it reaches the target host. Therefore, when
it is started, the whiteboard application’s GPSOverlayPlugin

594 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 39, NO. 5, SEPTEMBER 2009

Fig. 32. SWAT resource management use case diagram.

registers itself as a GPSSink. This stores a reference to the
GPSOverlayPlugin in the service registry, which can be used
to call specific methods of that class (see Fig. 32).

h) Group management: SWAT makes use of the Spread
toolkit [49] for communication services for security and group
management. In this context, it is a separate communications
channel from EMAA’s agent-to-agent messaging. Spread is
a fault-tolerant messaging service. As mentioned in the Sec-
tion VII-B2(e), a CA handles most group management functions
by allowing and disallowing members in the global group (i.e.,
all those on the wireless network) to join a specific group. Each
group has a unique public and private key securing intragroup
communication. Group members can share many sorts of data:
whiteboard annotations, VoIP messages, and GPS information.
Due to security, intergroup communication is not possible ex-
cept with the CA. Any major event, such as a join or a leave,
spawns a rekeying sequence.

i) Routing: SWAT can use any of several MANET pro-
tocols to create network routes. These protocols are separate
from the agents; however, they are necessary for agent-to-agent
communication. The optimized link state routing [50] protocol,
for example, supports a periodic survey of network state and
the sharing of route tables with neighbors. Consequently, each
host has a relatively current global topology of the network at
any given time. When messages are sent, the shortest path in
numbers of hops is the primary factor in determining a route;
other factors, such as link quality, are secondary.

VIII. CONCLUSION

This paper introduced the ASRM [1] and provided a set of
detailed examples of how the ASRM can be used to better un-
derstand and integrate agent-based systems. In the course of de-
veloping the ASRM, dozens of agent frameworks were analyzed
using software analysis techniques. The data that resulted from
techniques provided a detailed map of how existing software de-
velopers design the frameworks for the creation and execution
of agents. The ASRM takes no stand on what might make an
agent “intelligent,” leaving that to the developer to implement
as part of the control mechanisms of the individual agents. The
ASRM’s focus is on enabling system-level descriptions of how
agents (potentially from different frameworks) interact. To this
end, the ASRM has used evidence from the software analysis
results to define a five-layered model for how agents are situ-

ated in the world and interconnected as part of an agent-based
system. The analysis results also provide information regarding
minimum conformance requirements for each of the layers as
well as the process models for functional components (i.e., se-
curity, management, etc.) in the generic agent framework. To
support the utility of the ASRM, we provided several examples
of how the ASRM can be used to better understand existing
agent systems. It is the belief of the authors that the ASRM
fills an important missing component in agent systems research.
Completely compatible with FIPA, the ASRM enables devel-
opers to map where FIPA and other standards are best used
in the context of a large, heterogeneous agent-based system.
Further, the ASRM provides the beginnings of a roadmap for
agent framework developers to guide system development is-
sues and make rational decisions about which system layer is
best for providing needed functionality to agents. Every attempt
has been made to make this paper’s contents highly clinical and
free of the subjective opinions that sometimes dominate agent
literature. It is our hope that the ASRM stimulates additional
discussion and enables researchers to advance the utility and
application of agent technology to emerging problems of global
need.

ACKNOWLEDGMENT

The authors would like to thank the members of the U.S.
Army Intelligent Agents SubIPT6 for their input on this paper.

REFERENCES

[1] I. Mayk and W. C. Regli, Eds. (2006, Nov.). Agent Systems Ref-
erence Model. Intelligent Agents Integrated Product Sub-Team, Net-
working Integrated Product Team, Command and Control Directorate,
Headquarters, US Army Research, Development, and Engineering Com-
mand, Communications-Electronics Research, Development, and Engi-
neering Center, Department of the Army [Online]. Available: http://gicl.cs.
drexel.edu/people/regli/reference_model-v1a.pdf

[2] R. Malveau and T. J. Mowbray, Software Architect Bootcamp. Engle-
wood Cliffs, NJ: Prentice-Hall, 2001.

[3] H. Zimmerman, “OSI reference model—The ISO model of architecture
for open system interconnection,” IEEE Trans. Commun., vol. 28, no. 4,
pp. 425–432, Apr. 1980.

[4] D. B. Lange, M. Oshima, G. Karjoth, and K. Kosaka, “Aglets: Program-
ming mobile agents in java,” in Proc. Int. Conf. Worldwide Comput. Appl.,
1997, pp. 253–266.

[5] A. Helsinger, M. Thome, and T. Wright, “Cougaar: A scalable, distributed
multi-agent architecture,” in Proc. IEEE Int. Conf., Systems, Man, and
Cybernetics, Oct. 2004, vol. 2, pp. 1910–1917.

[6] K. Sycara and A. S. Pannu. (1998, May 9–13). The RETSINA multi-
agent system: Towards integrating planning, execution and information
gathering. Proc. 2nd Int. Conf. Auton. Agents (Agents 1998), K. P. Sycara
and M. Wooldridge, Eds. New York: ACM Press [Online]. pp. 350–351.
Available: http://www.acm.org/pubs/articles/proceedings/ai/280765/p350
-sycara/p350 -sycara.pdf

[7] S. Poslad, P. Buckle, and R. Hadingham, “The FIPA-OS agent platform:
Open source for open standards,” in Proc. 5th Int. Conf. Exhib. Practical
Appl. Intell. Agents Multi-Agents, 2000, pp. 355–368.

[8] C. Baumer, M. Breugst, S. Choy, and T. Magedanz, “Grasshopper—
A universal agent platform based on OMG MASIF and FIPA stan-
dards,” Proc. 1st Int. Workshop Mobile Agents Telecommun. Appl., 1999,
pp. 1–18.

[9] D. Sislak, M. Rollo, and M. Pechoucek, “A-globe: Agent platform with
inaccessibility and mobility support,” Cooperative Inf. Agents, vol. VIII,
pp. 199–214, 2004.

6Integrated Product/Process Team.

REGLI et al.: DEVELOPMENT AND SPECIFICATION OF A REFERENCE MODEL FOR AGENT-BASED SYSTEMS 595

[10] R. P. Lentini, G. P. Rao, J. N. Thies, and J. Kay, “EMAA: An extendable
mobile agent architecture,” in Proc. AAAI Workshop Softw. Tools Dev.
Agents. Madison, WI: AAAI, Jul. 1998.

[11] F. Bellifemine, A. Poggi, and G. Rimassa. (1999). JADE–A FIPA-
compliant agent framework. Proc. 4th Int. Conf. Practical Appl. Agents
Multi-Agent Syst. (PAAM 1999). London U.K.: The Practical Appl. Com-
pany Ltd. [Online]. pp. 97–108. Available: http://sharon.cselt.it/projects/
jade/PAAM.pdf 2009.

[12] N. Suri, J. M. Bradshaw, M. R. Breedy, P. T. Groth, G. A. Hill, R. Jeffers,
T. S. Mitrovich, B. R. Pouliot, and D. S. Smith, “NOMADS: Toward a
strong and safe mobile agent system,” in Proc. 4th Int. Conf. Auton. Agents,
C. Sierra, M. Gini, and J. S. Rosenschein, Eds. Barcelona, Spain: ACM
Press, Jun. 2000, pp. 163–164 (Poster announcement).

[13] G. I. Inc. (2006). CoABS Web site [Online]. Available: http://coabs.
globalinfotek.com/

[14] A. R. Silva, A. Romao, D. Deugo, and M. M. D. Silva, “Towards a
reference model for surveying mobile agent systems,” Auton. Agents
Multi-Agent Syst., vol. 4, pp. 187–231, 2001.

[15] FIPA Abstract Architecture Specification, Foundation for Intelligent Phys-
ical Agents, Dec. 2003.

[16] D. Chess, C. Harrison, and A. Kershenbaum, “Mobile agents: Are they a
good idea?” International Business Machines Corporation (IBM), York-
town Heights, NY, Tech. Rep. RC-19887, Dec. 1994.

[17] O. Etzioni and D. S. Weld. (1995, Aug.). Intelligent agents on the Inter-
net: Fact, fiction, and forecast. IEEE Expert [Online]. 10(4), pp. 44–49.
Available: ftp://ftp.cs.washington.edu/pub/ai/ieee-expert.ps.Z.

[18] C. Ghezzi and G. Vigna, “Mobile code paradigms and technologies: A
case study,” presented at the 1st Int. Workshop Mobile Agents, Berlin,
Germany, Apr. 1997.

[19] A. Fuggetta, G. P. Picco, and G. Vigna. (1998, May). Understanding code
mobility. IEEE Trans. Softw. Eng. [Online]. 24(5), pp. 342–361. Available:
http://www.elet.polimi.it/Users/DEI/Sections/Compeng/GianPietro.Picco/
papers/tse98.ps.gz

[20] D. Kotz, R. Gray, and D. Rus, “Future directions for mobile-agent re-
search,” Dartmouth College, Hanover, NH, Tech. Rep. TR-2002-415, Jan.
2002.

[21] M. N. Huhns and M. P. Singh, Eds., Readings in Agents. San Francisco,
CA: Morgan Kaufman, 1998.

[22] M. N. Huhns and M. P. Singh, “A multiagent treatment of agenthood,”
Appl. Artif. Intell., vol. 13, no. 1–2, pp. 3–10, Jan.–Mar. 1999.

[23] R. S. Gray, D. Kotz, G. Cybenko, and D. Rus, “Mobile agents: Motivations
and state-of-the-art systems,” Dartmouth College, Hanover, NH, Tech.
Rep. TR2000-365, 2000.

[24] M. Wooldridge, Reasoning About Rational Agents. Boston, MA: MIT
Press, 2000.

[25] S. Hanks, M. E. Pollack, and P. R. Cohen, “Benchmarks, testbeds, con-
trolled experimentation, and the design of agent architectures,” AI Mag.,
vol. 14, no. 4, pp. 17–42, 1993.

[26] S. P. Fonseca, M. L. Griss, and R. Letsinger, “Agent behavior architectures
a MAS framework comparison,” in Proc. 1st Int. Joint Conf. Auton. Agents
Multiagent Syst. (AAMAS 2002), M. Gini, T. Ishida, C. Castelfranchi, and
W. L. Johnson, Eds. Barcelona, Spain: ACM Press, Jul., pp. 86–87.

[27] H. S. Nwana, “Software agents: An overview,” Knowl. Eng. Rev., vol. 11,
no. 3, pp. 1–40, Sep. 1996.

[28] L. Hagen, M. Breugst, and T. Magedanz. (1998, Aug.). Impacts
of mobile agent technology on mobile communications system evo-
lution. IEEE Pers. Commun. [Online]. 5(4), pp. 56–69. Available:
http://www.ikv.de/download/grasshopper/IEEE-PCM-98.pdf

[29] K. P. Sycara, “Multiagent systems,” AI Mag., vol. 19, no. 2, pp. 79–92,
1998.

[30] N. R. Jennings, K. Sycara, and M. Woolridge, “A roadmap of agent
research and development,” J. Auton. Agents Multi-Agent Syst., vol. 1,
no. 1, pp. 7–38, 1998.

[31] G. Vigna, Ed., Mobile Agents and Securit (Lecture Notes in Computer
Science). New York: Springer-Verlag, 1999.

[32] M. D’Inverno, Understanding Agent Systems. New York: Springer-
Verlag, 2001.

[33] G. Weiss, Multiagent Systems: A Modern Approach to Distributed Artifi-
cial Intelligence. Boston, MA: MIT Press, 2001.

[34] M. Wooldridge, Introduction to Multi-Agent Systems. New York: Wiley,
2002.

[35] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
2nd ed. Upper Saddle River, NJ: Prentice-Hall, 2003.

[36] D. Milojicic, F. Douglis, and R. Wheelter, Mobility: Processes, Comput-
ers, and Agents. Reading, MA: Addison-Wesley, 1999.

[37] E. J. Chikofsky and J. H. Cross, II, “Reverse engineering and design
recovery: A taxonomy,” IEEE Softw., vol. 7, no. 1, pp. 13–17, Jan. 1990.

[38] T. M. Austin and G. S. Sohi, “Dynamic dependency analysis of ordinary
programs,” in Proc. 19th Annu. Int. Symp. Comput. Archit., Brisbane, Qld.,
Australia: ACM Press, 1992, pp. 342–351.

[39] T. Sandholm and Q. Huai, “Nomad: Mobile agent system for an Internet-
based auction house,” IEEE Internet Comput., vol. 4, no. 2, pp. 80–86,
Mar./Apr. 2000.

[40] V. Roth. (2002). Empowering mobile software agents [Online]. Available:
citeseer.ist.psu.edu/roth02empowering.html

[41] T. Eisenbarth, R. Koschke, and D. Simon. (2003). Locating
features in source code. [Online]. Available: citeseer.ist.psu.edu/
eisenbarth03locating.html

[42] H. Safyallah and K. Sartipi, “Dynamic analysis of software systems using
execution pattern mining,” in Proc. 14th IEEE Int. Conf. Program Com-
prehension (ICPC 2006), Washington, DC: IEEE Comput. Soc. Press,
pp. 84–88.

[43] N. Suri, “Nomads and agile computing,” presented at the US Army
CERDEC Intell. Agents Sub Integrated Product Team, Fort Monmouth,
NJ, Aug. 2005.

[44] D. Xu, J. Yin, Y. Deng, and J. Ding, “A formal architectural model for
logical agent mobility,” IEEE Trans. Softw. Eng., vol. 29, no. 1, pp. 31–45,
Jan. 2003.

[45] V. R. Lesser, “Evolution of the GPGP/TæMS domain-independent coordi-
nation framework,” in Proc. 1st Int. Joint Conf. Auton. Agents Multiagent
Syst. (AAMAS 2002), M. Gini, T. Ishida, C. Castelfranchi, and W. L.
Johnson, Eds. Barcelona, Spain: ACM Press, Jul., pp. 1–2.

[46] T. Wright, “Naming services in multi-agent systems: A design for agent-
based white pages,” in Proc. 3rd Int. Joint Conf. Auton. Agents Multiagent
Syst., 2004, pp. 1478–1479.

[47] K. Sycara, J. Lu, M. Klusch, and S. Widoff, “Dynamic service matchmak-
ing among agents in open information environments,” J. ACM SIGMOD
Rec., vol. 28, pp. 47–53, 1999.

[48] E. Sultanik, D. Artz, G. Anderson, M. Kam, W. Regli, M. Peysakhov,
J. Sevy, N. Belov, N. Morizio, and A. Mroczkowski, “Secure mobile
agents on ad hoc wireless networks,” in Proc. 15th Innovative Appl. Artif.
Intell. Conf., American Association for Artificial Intelligence, Acapulco,
MX, Aug. 2003.

[49] Y. Amir, C. Nita-Rotaru, J. Stanton, and G. Tsudik, “Secure spread: An
integrated architecture for secure group communication,” IEEE Trans.
Dependable Secure Comput., vol. 2, no. 3, pp. 248–261, Jul.–Sep. 2005.

[50] T. Clausen and P. Jacquet, “Optimized link state routing protocol,” IETF
Network Working Group, Tech. Rep. RFC 3626, 2003.

William C. Regli (A’03–M’03–SM’06) received the
B.S. degree in computer science and mathematics
from Saint Joseph’s University, Philadelphia, PA, in
1989, and the Ph.D. degree in computer science from
the University of Maryland, College Park, in 1995.

He is currently a Professor of computer science
at Drexel University, Philadelphia, PA, with joint ap-
pointments in the Department of Mechanical Engi-
neering and Electrical and Computer Engineering,
where he is also the Director of the Applied Com-
munications and Information Networking Program.

He is also a Senior Scientific Adviser to the Department of Justice’s Com-
munications Technologies Center of Excellence. His current research interests
include several computer science and engineering fields such as artificial intel-
ligence, solid modeling and graphics, computer-aided design (CAD)/computer-
aided manufacturing (CAM) integration, mechanical design, and wireless net-
works. His research has been sponsored by a wide variety of organizations. He
has filed four patent and has authored or coauthored more than 150 technical
publications.

Prof. Regli was the recipient of many awards, including the National Sci-
ence Foundation (NSF) CAREER Award, the National Research Council (NRC)
Postdoctoral Award, the National Institute of Standards and Technology (NIST)
Special Service Award, and the Drexel College of Engineering Research Award.
He was the corecipient of the Army’s 2006 International Collaboration and the
Institute for Defense and Government Advancement (IDGA)’s Best Network-
Centric Warfare (NCW) Program Award. He is a Life Member of the Association
for the Advancement of Artificial Intelligence (AAAI) and the Sigma Xi. He is
a Senior Member of the Association for Computing Machinery (ACM).

596 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 39, NO. 5, SEPTEMBER 2009

Israel Mayk (S’80–M’80–SM’88) received the B.A. degree in physics from
Rutgers University, Newark, NJ, in 1970, the M.Sc. degree in nuclear physics
from Weizmann Institute of Science, Rehovot, Israel, in 1973, and the Eng.Sc.D.
degree in electrical engineering from New Jersey Institute of Technology,
Newark, in 1985.

He is currently an Electronics Engineer/Research Scientist and a Technical
Manager with the Command and Control Directorate, U.S. Army Research,
Development and Engineering Command (RDECOM), Communications-
Electronics Research, Development and Engineering Center (CERDEC), Fort
Monmouth, NJ. He is responsible for research and development of battle-
command-knowledge-based decision support systems demonstrations and pro-
totypes as well as for technology integration and architectures.

Dr. Mayk is a member of the Armed Forces Communication and Electronics
Association (AFCEA), the Association of the United States Army (AUSA), and
the U.S. Naval Institute (USNI). He is currently the Chair of the Intelligent
Agents Integrated Product Sub-Team (sub-IPT), RDECOM Network IPT, the
Technical Manager of several Exploratory Development and Advanced Devel-
opment Programs including the Information Dissemination and Management
for Battle Command Services of the U.S. Army Technology Objective Program
called Tactical Information Technology for Assured NetOps (TITAN).

Christopher J. Dugan received the M.S. degree in computer science from
Drexel University, Philadelphia, PA, in 2006.

He is currently with Drexel University, where he was involved in the field
of agent system formalizations and distributed voting in the Secure Wireless
Agent Testbed Laboratory.

Joseph B. Kopena is currently a graduate student of computer science at Drexel
University, Philadelphia, PA. He is currently a Researcher in the Secure Wireless
Agent Testbed Laboratory, Drexel University, Philadelphia, PA. His current
research interests include knowledge representation and wireless networking.

Robert N. Lass (S’06) received the Undergraduate
degree in 2003 from Drexel University, Philadelphia,
PA, where he is currently working toward the Ph.D.
degree.

He is a Graduate Research Fellow at the Applied
Communication and Information Networking Labo-
ratory, Drexel University. His current research inter-
ests include constraint reasoning, distributed systems,
and mobile ad hoc networks.

Pragnesh Jay Modi passed away shortly after the completion of the reference
model. During his relatively short career he made several significant contribu-
tions to artificial intelligence, especially in the field of distributed constraint
optimization. Jay was selected as one of the top ten young artificial intelligence
(AI) researchers by the IEEE Intelligent Systems Advisory Board and was also
an National Science Foundation (NSF) CAREER Award recipient. He was a
much loved professor, mentor, and friend.

William M. Mongan (S’06) received the Undergrad-
uate degree in computer science from Drexel Univer-
sity, Philadelphia, PA, in 2005, the M.Sc. degree in
science of instruction from the School of Education,
Drexel University, in 2008, and the M.Sc. degree in
computer science from Drexel University, in 2008.

He is currently with the Department of Computer
Science, Drexel University. His current research in-
terests include software architecture and composi-
tion, service-oriented architectures, agent-based sys-
tems, and program comprehension through software

engineering. He was engaged in computer science education and engineering
education. He has taught and volunteered with students in grades 5 through 12.
He is an Instrument-Rated Private Pilot of single- and multiengine airplanes.

Dr. Mongan was a Fellow of the National Science Foundation (NSF) GK-12
for two years. He holds a Secondary Mathematics Teaching Certification in
Pennsylvania, and has been a member of the School Board Technology and
Grant-Writing Committees.

Jeff K. Salvage received the B.S. and M.S. de-
grees in computer science from Drexel University,
Philadelphia, PA.

He is currently a Senior Lecturer in the Department
of Computer Science, Drexel University, Philadel-
phia, PA. His expertise is in database systems and
software design. He is the author or coauthor of many
books on a variety of subject matters within and out-
side of computer science. He was involved in both
academia and the corporate world.

Evan A. Sultanik (S’05) received the B.S. and M.S.
degrees in computer science and the B.S. degree in
mathematics from Drexel University, Philadelphia,
PA. He is currently working toward the Ph.D. de-
gree in the Drexel Applied Communications and In-
formation Networking Program, Drexel University,
Philadelphia, PA.

His current research interests include distributed
artificial intelligence, ad hoc networking, metrics, ap-
proximation algorithms, mobile and multiagent sys-
tems, simulation, and constraint reasoning.

Mr. Sultanik was the recipient of a number of fellowships and awards, in-
cluding the Hill and Koerner Fellowships.

