
Dotted Version Vectors: Logical Clocks for Optimistic Replication

Nuno Preguiça
CITI/DI

FCT, Universidade Nova de Lisboa
Monte da Caparica, Portugal

nmp@di.fct.unl.pt

Carlos Baquero, Paulo Sérgio Almeida,
Victor Fonte, Ricardo Gonçalves

CCTC/DI
Universidade do Minho

Braga, Portugal
{cbm,psa,vff}@di.uminho.pt, rtg@lsd.di.uminho.pt

Abstract

In cloud computing environments, a large number
of users access data stored in highly available storage
systems. To provide good performance to geographi-
cally disperse users and allow operation even in the
presence of failures or network partitions, these sys-
tems often rely on optimistic replication solutions that
guarantee only eventual consistency. In this scenario,
it is important to be able to accurately and efficiently
identify updates executed concurrently. In this paper,
first we review, and expose problems with current ap-
proaches to causality tracking in optimistic replication:
these either lose information about causality or do not
scale, as they require replicas to maintain information
that grows linearly with the number of clients or
updates. Then, we propose a novel solution that fully
captures causality while being very concise in that it
maintains information that grows linearly only with
the number of servers that register updates for a given
data element, bounded by the degree of replication.

1. Introduction

The design of Amazon’s Dynamo system [1] was an
important influence to a new generation of databases,
such as Cassandra [2], Riak1 and Voldemort2 focusing
on partition tolerance, write availability and eventual
consistency. The underlying rationale to these systems
stems from the observation that when faced with the
three conflicting goals of consistency, availability and
partition-tolerance only two of those can be achievable
in the same system [3], [4]. Facing wide area oper-
ation environments where partitions cannot be ruled
out, these systems relax consistency requirements to
provide high availability.

1. http://www.basho.com/Riak.html
2. http://project-voldemort.com/

The mentioned systems follow a design where the
data store is always writable. A consequence is that
replicas of the same data item are allowed to diverge,
and this divergence should later be repaired. Accurate
tracking of concurrent data updates can be achieved
by a careful use of well established causality tracking
mechanisms [5], [6], [7], [8]. In particular, for data
storage systems, version vectors [6] enables the system
to compare any pair of replica versions and detect if
they are equivalent, concurrent or if one makes the
other obsolete. A replica version that is determined
to be obsolete can be replaced by a more recent
replica version. Merging concurrently modified repli-
cas usually requires semantic reconciliation, and this
is typically achieved by sending to users (or to higher
level application logic) the set of concurrent replica
versions, and metadata context, and have them write a
new version that supersedes the provided versions.

When accurate causality tracking and handling of
concurrent replica versions is considered too complex
for a given application domain, systems such as Cas-
sandra resort to physical timestamps derived from node
or client clocks, upon which they establish what replica
version is considered the most recent. The drawback
of this simplification is that it enforces a last writer
wins strategy where some concurrent updates are lost.
In addition, if the clocks are poorly synchronized
some nodes/clients might always lose their competing
concurrent updates.

Even in systems where a full-fledged characteriza-
tion of causality is sought, there are important limita-
tions to either system scalability or to the correctness
of the causality tracking in present implementations.
In this paper, first we analyze these problems, with a
special focus on solutions used in replicated key-value
stores designed for cloud computing environments,
such as Dynamo, Cassandra and Riak.

We then propose a novel mechanism, dotted version

ar
X

iv
:1

01
1.

58
08

v1
 [

cs
.D

C
]

 2
6

N
ov

 2
01

0

http://www.basho.com/Riak.html
http://project-voldemort.com/

vectors, that can provide an accurate and scalable
solution to track causality of updates performed by
clients. Our approach builds on version vectors; how-
ever, unlike previous proposals, it does not require an
entry per-client, but only an entry per-server that stores
a replica; i.e., according to the degree of replication.

The remainder of this paper is organized as follows.
Section 2 presents the system model. Section 3 surveys
the current solutions used for causality tracking and
discusses their limitations. Section 4 introduces a new
kernel of operations on which causality tracking can be
based, and on which our proposal is built. Section 5
presents the new mechanism: dotted version vectors.
Section 6 discusses related work and Section 7 con-
cludes the paper with some final remarks.

2. System model

Storage systems for cloud computing environments
can be seen as composed of a set of interconnected
server nodes that provide a data read/write service to a
much larger set of clients. Without loss of generality,
we can consider a standard key-value store interface
that exposes two operations: GET(K) and PUT(K,V).
(A delete operation can be implemented, for example,
by executing a put with a special value.)

A given key is replicated in only a subset of the
server nodes, which we call the replica nodes for that
key. For our analysis, the approach used to decide
which nodes will replicate a given key (e.g., consistent
hashing) in not important. Depending on the system, in
each replica node, for each key, the system maintains
either a single value or multiple concurrent values. We
name each of these values, a replica version or simply
a version when no confusion may arise.

These systems usually rely on an optimistic replica-
tion approach [9], allowing client operations to com-
plete without coordination. In case of concurrent up-
dates to the same key, these systems usually guarantee
eventual consistency by either relying on a last writer-
wins strategy (e.g. Cassandra [2]) or by maintaining
multiple versions for the concurrent updates to the
key (e.g. Amazon’s Dynamo [1], Depot [10], Riak).
In the latter case, conflicts can be solved by issuing
a new update that supersedes the concurrent versions,
which is usually done by the client (but could also be
automatically executed by application code running on
a server).

For achieving this execution model, these systems
must include some form of causality tracking. In the
next section, we analyze the main approaches used
currently in these systems, and discuss their properties
and limitations.

Client
C1

Client
C3

Time

Replica
Node
Rb

Replica
Node
Ra

Client
C2

{}:u

u
{}

u
{}

u
{}

put(v,{})

put(w,{}}

put(x,{})

{b1}:v
{b1}:v
{b2}:w

{a1}:x

x
{a1}

put(y,{a1})

{a1,a2}:y

{}:u

Figure 1. Three clients concurrently modifying the
same key on two replica nodes. Causal histories.

An important aspect to consider when reasoning
about the scalability of these approaches, is the ex-
istence of three different orders of magnitude at play:
a small number of replica nodes for each key; a large
number of server nodes; a huge number of clients, keys
and issued operations. Thus, a scalable solution should
avoid mechanisms that are linear with the highest
magnitude and, if possible, even try to match the lowest
scale.

3. Common approaches to Causality
tracking

When considering the system composed by the
clients and the storage system, a large number of causal
relations are established as the clients issue operations
to the servers. Different key-value storage systems
trace different sub-sets of these relations.

One simple way to formally illustrate this is to
use causal histories [7]. Causal histories are simply
described by sets of unique update event identifiers.
These unique update identifiers can be generated by
a unique node identifier and a monotonic integer
counter. (We will use replica-based identifiers but
client identifiers could be used as well. The crucial
point is that identifiers have to be globally unique.)
The partial order of causality can be precisely tracked
by comparing these sets by set inclusion. Two histories
are concurrent if neither include the other: A ‖ B iff
A 6⊆ B and B 6⊆ A.

Consider a simple example, illustrated in Figure 1:
Clients C1, C2, C3 read the same state from synchro-
nized replica nodes and do independent updates. In

this simplified description we omit the keys, implicitly
assuming they are the same, and only show the causal
information that is committed to each replica node and
respective versions, in the same order.

When client C1 does its first PUT, replica node
Rb will record the version associated with the causal
history {b1} that includes the update identifier, b1, and
the history previously observed by C1, {} in this case.
When client C2 does its PUT, the causal history asso-
ciated with the new value will be {b2}, which does not
include b1 because C2 has not observed this version.
Thus, Rb ends up with two concurrent versions, as
stated by the causal histories. The second PUT from
client C1, handled by Ra, supplies a new version y
together with its knowledge of causal history {a1},
obtained from its last GET. Replica Ra records this
update and adds a2 to its corresponding causal history.
Since {a1} ⊂ {a1, a2} the version y will syntactically
dominate x and replace it in the committed state in
Ra.

At the end of the run we have a value y in Ra

than can be detected, by the causal histories, to be
concurrent with the two concurrent values, v and w,
stored on replica node Rb.

This very simple model assumes that the client
maintains no state other than the context of the last
GET when executing a PUT operation. This may lead
to unexpected results for a client issuing a sequence
of operations. For example, a client, after observing
some given version of the data, may later observe an
older version. To address this problem, the client could
maintain the causal history of observed data, which
would contain all the update identifiers observed. This
could be easily computed by the union of the causal
histories returned in GET operations and the identifiers
of executed PUT operations (which could be returned
to the client when acknowledging the PUT). This
causal history could be passed as an argument in GET
operations, restricting the servers that could process
the operation to the ones that contain the given causal
history (e.g., Bayou provides these session guarantees,
using a solution based on version vectors [11]).

Although conceptually simple, causal histories are
not adequate for use in practical systems, since they
scale linearly with the number of updates. Next, we
survey the mechanisms used in actual systems.

3.1. Causally compliant total order

One simple approach is to establish a total order
among updates that is compliant with causal depen-
dencies, and use this order to enforce a last writer wins
policy. The simplest total order is obtained assuming

Client
C1

Client
C3

Time

Replica
Node
Rb

Replica
Node
Ra

Client
C2

0:u

u

u

u

put(v,5)

put(w,7)

put(x,8)

5:v 7:w

8:x

x

put(y,10)

10:y

0:u

Figure 2. Three clients concurrently modifying the
same key on two replica nodes. Perfectly synchro-
nized real time clocks.

that client clocks are well synchronized and applying
real time clock order (simultaneous events are usually
further ordered over process ids). In this approach,
replica nodes never store multiple versions and writes
do not need to provide a get context.

Figure 2 depicts the same run used to illustrate
the use of causal histories, but now using perfectly
synchronized client clocks. One can observe that con-
current events are ordered by the clocks and that the
total order is compliant with the causal order: If two
values would have causal histories c and c′ such that
c ⊂ c′ then the real time clocks t and t′ are such that
t < t′. This can be verified, observing values x and y
in the run.

The problem is that although causally we have
a partial order with {a1, a2} ‖ {b1} ‖ {b2}, this
approach ends up ordering all updates. The total order
established is compliant with causality, but will order
actions that are in fact concurrent.

The approach based on client real time clocks is
used in Cassandra v0.6.x (and v0.7.0 betas) [2], and
referred in Dynamo as an alternative to version vectors
for some application settings.

An important drawback with real time is that if client
clocks go out of sync the total order might no longer be
compliant with causality. It is easy to see that a client
with systematically delayed clock values will never see
its updates committed and, conversely, that if a clock
is always advanced its client updates will always win
over concurrent ones.

An alternative approach that avoids real time clock
synchronization and the potential anomalies when it

Client
C1

Client
C3

Time

Replica
Node
Rb

Replica
Node
Ra

Client
C2

{}:u

u
{}

u
{}

u
{}

put(v,{})

put(w,{})

put(x,{})

{(b,1)}:v {(b,2)}:w

{(a,1)}:x

x
{(a,1)}

put(y,{(a,1)})

{(a,2)}:y

{}:u

Figure 3. Three clients concurrently modifying the
same key on two replica nodes. Per-server entries.

fails, would be to use Lamport clocks [5], establishing
a total order among updates that is compliant with
causal dependencies. This can be easily achieved by
assigning a pair (CLOCK,REPLICA), where CLOCK is
a Lamport clock and REPLICA, a unique site identifier
that can be either the identifier of the client or the
replica node that received the update. As usual, for
tracing causality, the local clock used to tag new
updates must be updated when the client gets a newer
version of the data. A total order is established on
these pairs, as usual, with (ca, ra) < (cb, rb) iff
ca < cb ∨ (ca = cb ∧ ra < rb). Again, this total order
would not represent concurrent events.

3.2. Version vectors with per-server entry

A second approach is to track causality by using
version vectors [6] with an entry per server replica
node. In this case, each server maintains a version
vector where each entry summarizes the sequence of
updates it reflects. For example, a causal history of
sequential replica events {a1, a2, b1, b2, c1} is summa-
rized as {(a, 2), (b, 2), (c, 1)}. In traditional version
vectors, for a fixed and ordered set of nodes, this can
be further summarized as [2, 2, 1], but this notation is
not adequate for dynamic systems where the number
of nodes can vary over time.

When the client executes a GET operation, it receives
the version vector summarizing the causal history of
events reflected in the version(s) received. Later, when
the client executes a PUT, it sends the context on
which the update is executed, i.e., the version vector
previously received. The replica node increments its

local counter to reflect the new update, and stores it
in the entry of the received vector corresponding to
its own identifier. It then checks if this new vector
causally dominates any version currently stored, and
discards any version made obsolete.

In this case, it is possible to track the causality
among updates that were received in different servers.
Figure 3 depicts the same example run but now (as
opposed to Figure 2) updates y and w are correctly
detected to be concurrent, since {(a, 2)} ‖ {(b, 2)}.
If a client GET collects these versions from the two
replica nodes, this concurrency will be exposed and
the client, receiving two versions, can submit back a
version that dominates both updates.

However, this approach cannot track causality
among updates submitted to the same server. In the
example, when the update w from the client C2 is
submitted to replica Rb, it will get registered with
the version vector {(b, 2)} and appear to dominate
the previous committed value v with vector {(b, 1)}.
By comparing the version vectors of both updates,
they will not be considered concurrent. This can be
surprising considering the fact that if the second client
had submitted the update to a different server it would
be considered concurrent.

In practice a last writer wins policy was enforced
with respect to concurrent updates handled in the
same replica node, and, in this case, one concurrent
update was lost. This linearization of concurrent up-
dates, due to the use of less version vector entries
than sources of concurrent activity, is formalized in
plausible clocks [12]. The Dynamo system uses one
entry per replica node and thus falls into this category.

The reason for the concurrent updates of the two
clients submitted to the same server not being con-
sidered concurrent is consequence of the fact that the
version vector associated with the second update does
not correctly summarizes its causal history. In fact,
the vector {(b, 2)} summarizes updates {b1, b2}, which
includes the update v of the first client C1. One can
argue that the replica node Rb could instead verify that
the new update is concurrent with its current version
by checking that the version vector included in the
operation does not dominate the version vector of the
current version. In this case, the replica node could
reject the update, implementing a conditional write
semantics. This approach is used, e.g., in Coda [13]
and in the CVS version control system (although not
necessarily relying on version vectors). However this
goes against the usual policy of write availability [1].
The other possibility would be to register the conflict
and maintain both data versions. In this case, the
problem is that there is no version vector the replica

node Rb could generate that traces the dependency
with the other version, as {(b, 2)} would be interpreted
as overwriting {(b, 1)}.

3.3. Version vectors with per-client entry

We have seen that version vectors with one entry per
replica node are not enough to track causality among
concurrent clients3. One natural approach is to track
causality by using version vectors with one entry per
client (if servers can also update the data, with server
side scripts, an entry for each server should also be
included in the version vector). Now the number of
entries matches the number of concurrency sources and
one no longer faces a plausible clocks setting.

As in the previous approach, updates are associated
with a version vector. When a client executes a GET
operation, it will receive the version vector associated
with the version(s) that it reads. Later, when a client
submits a new update, using PUT, the replica node will
receive this vector and the client identity.

With per-client entries, the correct way to obtain
the integer value used to register the update would be
for each client to maintain a counter, increment it and
provide it in each PUT operation, together with the
context previously received. A version vector for the
new version can be obtained from the context version
vector by replacing the entry of the client by the given
value. If we want to support a model with stateless
clients, which only provide the context received by
a GET and their unique identifier, we can do so if
we have a read your writes semantics [11] (obtained,
e.g., through read and write quorums), so that the most
recent update by a given client is present in the context.

Otherwise, the server can, at most, try to infer the
moat recent update by that client, by using the maxi-
mum of the respective entry in the received context and
all vectors at the server for that key. As a more recent
update by that client can be stored in other server, this
can lead to lost updates.

In Figure 4, in the usual run, we illustrate this
problem. Client C1 when writing v in node Rb, has
its updated registered as (C1, 1). Its later updates
will get distinct, and monotonically increasing values
as long as the client reads its last written version.
However in this run, the client will issue a later
update in replica Ra and this update will again be
registered with (C1, 1). The consequence is that now
value v seems to be dominated by version y, since
{(C1, 1)} < {(C1, 1), (C3, 1)}.

3. An interesting discussion on this issue can be seen in http:
//blog.basho.com/2010/04/05/why-vector-clocks-are-hard/

Client
C1

Client
C3

Time

Replica
Node
Rb

Replica
Node
Ra

Client
C2

{}:u

u
{}

u
{}

u
{}

put(v,{},c1)

put(w,{},c2)

put(x,{},c3)

{(c1,1)}:v
{(c1,1)}:v
{(c2,1)}:w

{(c3,1)}:x

x
{(c3,1)}

put(y,
{(c3,1)},c1)

{(c1,1),(c3,1)}:y

{}:u

Figure 4. Three clients concurrently modifying the
same key on two replica nodes. Per-client entries.

Although, when used correctly, this approach can
fully trace the causality among concurrent updates sub-
mitted by different clients, it has the obvious drawback
of requiring one entry per client, which makes the size
of the vectors now linear with the number of clients
that perform PUT operations.

Many web and cloud computing systems are based
on a three-tier architecture, where the clients of the
storage system are application servers (or other mid-
dleware components). Although this seems to allevi-
ate the scalability problem, as the number of these
components is small when compared to the number
of end-clients, this is not the case. In fact, as these
application servers (or middleware components) run
concurrent threads of activity, it is necessary to have an
entry for each thread of activity or concurrent updates
in different threads would not be considered concurrent
(as in the per-server entry approach). As threads of
activity are very dynamic, this also poses the problem
of how to keep track of their identifiers.

4. A Kernel for Eventual Consistency

We have seen that, as soon as clients can perform
concurrent updates managed by a single replica node,
several concurrent versions may result, that have to be
kept in that node. These version sets are returned by
a get operation, and their clocks are supplied as the
context in a put operation.

In this section we argue that the mechanics of
a distributed key-value store, in terms of causality
tracking, should be based on two core functions on
the sets of logical clocks of replicas.

http://blog.basho.com/2010/04/05/why-vector-clocks-are-hard/
http://blog.basho.com/2010/04/05/why-vector-clocks-are-hard/

• sync(S1, S2): takes two clock sets and returns a
clock set. It returns a set of concurrent clocks,
each belonging to one of the sets, and that to-
gether cover both sets while discarding obsolete
knowledge;

• update(S, Sr, r): takes a clock set (S, the context
supplied by the client), the set of clocks in the
replica node Sr, and the replica node id r, and
returns a clock. This clock should dominate all
clocks in S and not be dominated by any join of
clocks in the system.

More formally, in a given system containing the
replica nodes R, each with a version set Si, with
i ∈ R, these operations should be defined in a way
as to respect the following conditions. (Where we use
t for the join operation on clocks, assuming as usual
that the partial order on clocks is a join semilattice.)

• If S = sync(S1, S2), then:
1) ∀x ∈ S. x ∈ S1 ∪ S2,
2) ∀x, y ∈ S. x 6≤ y,
3) ∀x ∈ S1 ∪ S2.∃y ∈ S. x ≤ y.

• If u = update(S, Sr, r), then:
1) ∀x ∈ S. x ≤ u,
2) ∀x ∈

⋃
i∈R Si. (x ≤ u⇒ x ≤

⊔
S),

3) u 6≤
⊔⋃

i∈R Si.
The function sync produces a set of concurrent

clocks that describe the collective causal past in the
parameters. It simply returns elements from the sets in
the parameters, and it can have a general implemen-
tation, defined only in terms of the partial order on
clocks, regardless of their actual representation:

sync(S1, S2) = {x ∈ S1 |6 ∃y ∈ S2. x < y} ∪
{x ∈ S2 |6 ∃y ∈ S1. x < y}

The update operation can be more of a challenge
because its constraints involve a global condition on
the system, but it must be implemented without global
knowledge. This is specially the case in dynamic
systems, as described in [14], but here we have the
challenge of how to avoid the use of client identifiers in
clocks. Also, update needs to generate values that are
not in the sets of clocks passed as parameter, and that
will depend on the concrete representation of clocks.

Before developing some implementation, it is useful
to characterize clock mechanisms using causal histo-
ries as a reference, as in Section 3.

In term of causal histories, the update function is:

update(S, Sr, r) =
⋃
X∈S

X∪{e} with e 6∈
⋃ ⋃

i∈R
Si

Client

Node

Node

Node Node

Replica
Node

Replica
Node

Node Replica
Node

Client

Client

Client

Client

1

4

2

3

2

3

get(k)

(c,v)

Figure 5. A get operation.

which resorts to an oracle with global knowledge to
obtain a globally unique event identifier. (As shown
in Figure 1, these event names can be obtained with
unique replica node identifiers and monotonic coun-
ters.)

4.1. Using the kernel operations

A key-value store can now implement the operations
it intends to make available to clients by using the
kernel operations sync and update.

Operation get(k). When a client asks some proxy
node P to perform a get of some key k (step 1 in
Figure 5):
• P computes the set of replica nodes R for k;
• P ask to a subset of nodes in R for the value for

that key. Depending on the expected semantics,
this subset may contain, for example, a single
node or a quorum of nodes (step 2);

• P waits for the replies (step 3);
• P performs a reduce of the replies using the sync

operation, and replies to the client (step 4).

Operation put(k, v, S). When a client asks some
proxy node P to perform a put for some key (step
1 in Figure 6):
• P computes the set of replica nodes R for k;
• if P is a replica node for k, then P will coordinate

the request; otherwise P will forward the request
to some replica node for k, that will act as
coordinator (step 2);

• the coordinator C performs an update operation,
resulting in a clock value u = update(S, SC , C);

Client

Node

Node

Node Node

Replica
Node

Replica
Node

Node Replica
Node

3

4

5

Client

Client

Client

Client

1

7

2

6
put(k,v,c)

Figure 6. A put operation.

• C performs a sync between u and the local set of
instances, and stores the result of the sync S′C =
sync(SC , {u}) (step 3);

• C sends S′C to a subset of other nodes in R.
Depending on the expected semantics, this subset
may, for example, be empty or contain a quorum
of nodes (step 4);

• each of those nodes performs a sync between S′C
and the local set of instances, stores the result of
the sync S′i = sync(Si, S

′
C), and acknowledges to

C;
• C waits for the replies (if the subset is not empty)

(step 5);
• C acknowledges to the proxy P (step 6), which

in turn acknowledges to the client (or C acknowl-
edges directly if that is possible) (step 7).

Anti-entropy. In addition to what is done in the above
operations, nodes can at any moment decide to engage
in anti-entropy. A replica node can send its state,
including the clock set and version to other replica
node. The receiving node performs a sync with the
local entry for that key, and stores the result locally.

5. Dotted Version Vectors

We now present a concise and accurate represen-
tation for the clocks to be used as a substitute for
the classic version vectors in key-value stores. The
mechanism allows a lossless representation of causality
(contrary to, e.g., Plausible Clocks) while only using
server-based ids, and only a component per replica
node, thus avoiding the space consumption explosion
that occurs in id-per-client approaches.

While a version vector compresses causal histories
by representing, for each component, all events in a
range up to a given sequence number, we will be able
to represent also individual events that fall outside such
ranges.

As an example, a version vector
{(a, 2), (b, 1), (c, 3)} represents the causal history:

{a1, a2, b1, c1, c2, c3}.

We will be able to represent a causal history like:

{a1, a2, b1, c1, c2, c3, c7},

where event c7 falls outside the range from 1 to 3.
Dotted version vectors are able to represent, for any

given component, both a range, and a range plus and
individual event (a “dot”). We will see that a range plus
a single event (as opposed to arbitrary sets) is enough
for the scenario at hand.

5.1. Definition

A dotted version vector is a logical clock which
consists of a mapping from identifiers to either integers
or pairs of integers (m,n). For notational convenience
we will use instead a triple (id,m, n) for such elements
of the mapping. The events represented by a clock can
be characterized by a semantic function from clocks
(or sets of clocks) to causal histories:

C[[(r,m)]] = {ri | 1 ≤ i ≤ m},
C[[(r,m, n)]] = {ri | 1 ≤ i ≤ m} ∪ {rn},

C[[X]] =
⋃
x∈X
C[[x]].

In a component (r,m, n) we will always have n >
m.

With this definition, the causal history:

{a1, a2, b1, c1, c2, c3, c7},

that cannot be represented in a version vector,
will be represented by the dotted version vector
{(a, 2), (b, 1), (c, 3, 7)}.

5.2. Partial order

The order on clocks can be defined, as usual, in
terms of inclusion of causal histories; i.e.:

X ≤ Y ⇐⇒ C[[X]] ⊆ C[[Y]]

This can be computed by the function on mappings:

X ≤ Y ⇐⇒ ∀x ∈ X.∃y ∈ Y. x ≤ y,

Client
C1

Client
C3

Time

Replica
Node
Rb

Replica
Node
Ra

Client
C2

{}:u

u
{}

u
{}

u
{}

put(v,
{{}})

put(w,
{{}})

put(x,
{{}})

{(b,0,1)}:v
{(b,0,1)}:v
{(b,0,2)}:w

{(a,0,1)}:x

x
{{(a,0,1)}}

put(y,
{{(a,0,1)}})

{(a,1,2)}:y

{}:u

{(a,1,2)}:y
{(b,0,1)}:v
{(b,0,2)}:w

{(b,0,1)}:v
{(b,0,2)}:w

v,w
{(b,0,1)},{(b,0,2)}

put(z,
{{(b,0,1)},{(b,0,2)}})

{(a,1,2)}:y
{(a,0,3),(b,2)}:z

Figure 7. Three clients concurrently modifying the same key on two replica nodes. Dotted version vectors.

where the order on individual components of the
mapping is defined by the clauses:

(r,m) ≤ (r,m′) if m ≤ m′,
(r,m) ≤ (r,m′, n′) if m ≤ m′ ∨ m = m′ + 1 = n′,

(r,m, n) ≤ (r,m′) if n ≤ m′,
(r,m, n) ≤ (r,m′, n′) if n ≤ m′ ∨ (m ≤ m′ ∧ n = n′),

x 6≤ y otherwise.

This order allows concurrent clocks even using
only a component from a single replica node. As an
example:

{(r, 4)} ‖ {(r, 3, 5)},

as they represent the causal histories:

{r1, r2, r3, r4} ‖ {r1, r2, r3, r5},

This situation will arise when {(r, 4)} is stored in a
replica node and a client, which in the past has read
some value and got the context {(r, 3)}, now performs
a put using this context. This situation is very common
but cannot be handled with current mechanisms using
server-based identifiers.

In Figure 7, we present our usual run using dotted
version vectors. It can be seen that causality is ac-
curately tracked, even tough per-server identifiers are
used. We also extend the run so that replica node Rb

decides to do some anti-entropy and sends state to node
Ra that syncs its. Then, client C2 does an interaction
(with no affinity) where it reads from Rb and does an
update z to Ra. We can see that, as expected, z will
subsume both v and w, and is registered as concurrent
to y.

5.3. Update function

An update registered on a replica node r containing
the set of versions Sr, can have a reference definition,
in terms of causal histories using replica node ids plus
sequence numbers to distinguish events, as:

update(S, Sr, r) =
⋃

S ∪ {rn+1} with

n = max({0} ∪ {x | rx ∈
⋃

Sr}).

To define the update function, we make use of some
auxiliary functions. The ids function gives the set of
identifiers in a clock or set of clocks:

ids((r,)) = r,

ids((r, ,)) = r,

ids(X) = {ids(x) | x ∈ X}.

The d e function takes a clock or set of clocks
and a replica node identifier and returns the maximum
integer contained in the mapping from that identifier:

dCer = max({0} ∪ {m | (r,m) ∈ C ∨ (r, ,m) ∈ C}),
dSer = max({0} ∪ {dCer | C ∈ S}).

The update function can now be defined:

update(S, Sr, r) = {(i, dSei) | i ∈ ids(S) ∧ i 6= r} ∪
{(r, dSer, dSrer + 1)}.

It can be seen by this definition that (given that
sync does not generate new values) all clocks have
exactly one component which is a triple; all the others
are the same as in classic version vectors. This means

that dotted version vectors can also be thought of as a
standard version vector augmented by a pair identifier-
counter to describe the single dot needed.

In the example of Figure 7, each put operation
generates a new clock for the new version. The first
PUT from client C1 generate the clock (b, 0, 1), as no
version exists previously in replica node Rb. The same
for the first PUT from client C3 on replica node Ra,
which generates the clock (a, 0, 1). A more interesting
case is the first PUT from client C2 on replica node
Rb. In this case, as there is a version in replica node
Rb with a clock that is not dominated by the context of
the PUT, {}, the clock generated is (b, 0, 2), encoding
only the event b2 of the causal history.

The second PUT from client C1 exemplifies the
situation where a client overwrites the version it has
previously read. In this case, the generated clock is
(a, 1, 2), as the read context dominates (is equal in this
case) to the clock of the version in the replica node.

The most complex example arises in the second PUT
from client C1. This example exemplifies the situation
where a client receives two concurrent versions and
creates a new version that superseeds the previous
concurrent updates. In this case, the context of the PUT
is {{(b, 0, 1)}, {{(b, 0, 2)}}, and the clock generate in
replica node Ra is {(a, 0, 3), (b, 2)}. The component
(b, 2) encodes the events b1, b2 of the causal history,
which were represented in the context of the PUT. The
component (a, 0, 3) registers the new update event a3
associated with this PUT operation.

5.4. Correctness

The operations on a key-value store invoked by
clients (get and put) resort to the kernel operations
sync and update. These operate on (and return) sets of
clocks. Single clocks are not a first class entity that can
be operated upon by clients. A client may perform a
get, which may return a set of concurrent replicas and
the opaque context for the corresponding set of clocks.
The client may use the context on a subsequent put
operation, but cannot operate upon individual clocks
from that context.

The reason that makes it possible to have an accurate
representation of causality using dotted clocks, is that
all sets of clocks that are kept at replica nodes or
returned to clients have the invariant that, for each
node identifiers present in (some element of) the set,
all sequence numbers from 1 up to some given value
will be present in the union of the corresponding causal
histories.

More formally, we define the predicate over clock

sets:

downset(S)⇐⇒ ∀i ∈ ids(S).∀ 1 ≤ n ≤ dSei. in ∈ C[[S]],

which is true for sets of clocks for which the union
of the corresponding causal histories are downward
closed sets under the order over events ri ≤ sj ⇔
r = s ∧ i ≤ j. In other words, the predicate is true if,
for each node r, the set contains all events generated
by r up to some given point in time.

We now show that, in a given system containing
replica nodes R, each r ∈ R with a replica set Sr, the
following invariant holds:

∀r ∈ R. downset(Sr).

It is easy to see that if both X and Y are downsets,
then Z = sync(X,Y) will also be a downset. This
means that if we assume that the invariant holds, then
the values returned to clients are downsets. It also
means that, if S′C computed by the coordinator in a
put operation is a downset, then the values stored in
other replica nodes after receiving a store request from
the coordinator will also be downsets.

Therefore, to prove that the invariant holds, the only
interesting case is what happens in the coordinator in a
put operation. The new version set to be stored locally
will the result of an update followed by a sync: u =
update(S, SC , C) and S′C = sync(SC , {u}). Assuming
that S and SC are downsets, S′C will also be a downset
because:

• u will be present in the result S′C ;
• although {u} itself may not be a downset, for any

identifier i other than C, the computed mapping
(i, dSei) represents a contiguous range of events
starting from 1 for identifier i in the correspond-
ing causal history of S; the sync between {u} and
SC will therefore be a downset in what concerns
these identifiers;

• for identifier C, as some clock v in SC will not be
present in S′C only if v < u, as SC represents all
events from C up to dSCeC , and u contains only
one more event with number dSCeC +1, then S′C
represents a contiguous range starting from 1 for
id C.

To summarize: even though {u} is not necessarily a
downset, syncing it with the clock set in the coordina-
tor will result in a downset, as only a successor event
is added and no “holes” are created.

It remains to point out that, as the clock set S sent
as context from the client is a downset, the clock u
computed in the update can represent the appropriate

causal history (the union of the causal histories corre-
sponding to clocks in S plus a new event) accurately,
with no loss of information.

6. Related Work

Version tracking solutions as used in cloud stor-
age systems are rooted on Lamport’ seminal work
on the definition and role of causality in distributed
systems [5]. This work was the foundation for sub-
sequent advances in causality’s basic mechanisms and
theory, including the introduction of version vectors [6]
for tracking causality among replicas in a distributed
storage system and vector clocks [15], [16] for tracking
causality of events in a distributed systems.

Most of this initial work dealt with a fixed, mostly
small, number of participants. Later, several sys-
tems introduced mechanisms for the dynamic creation
and retirement of vector entries to be used when
a server enters and leaves the system. While some
techniques required the communication with several
other servers [17], others required communication with
a single server [18]. Interval Tree Clocks [14] are
able to track causality in a dynamic, descentralized
scenario where entites can be autonomously created
and retired. Other systems, such as Dynamo [1], use
unsafe techniques to remove entries that are expected
not to be necessary based on time.

Even with these mechanisms, tracking causality
through version vectors or vector clocks requires a
space linear with the number of entities in the system,
posing scalability problems for system with a large
number of elements [19]. This problem is experienced
in practice, for example, in cloud computing storage
systems, as discussed in Section 3.

Besides the safe techniques previously mentioned to
remove entries that are no longer needed, several other
directions have been tackled to address this problem.

The Roam system [20] runs a consensus protocol
to decrease, in all servers, the value of all entries of
the version vector by a constant value. The system
only keeps the entries that are larger than zero. The
dependency sequences [21] mechanism assumes a sce-
nario where dynamic, weakly-connected sets of enti-
ties (mobile hosts) communicate through designated
proxy entities chosen from a stable, well-connected
(mobile service stations). The mechanism maintains
information about the causal predecessors of each
event. It needs to take periodic global snapshots to
prune discardable causality-tracking metadata.

In Depot [10], the version vector associated with
each update only includes the entries that have changed
since the previous update in the same node. However,

each node still needs to maintain version vectors that
include entries for all clients and servers. In a sim-
ilar scenario, the same approach could be used as a
complement to our solution.

Other storage systems explore the fact that they
manage a large number of objects to maintain less in-
formation for each object. In Microsoft’s WinFS [22],
a base version vector for all objects is maintained for
the file system, and each object maintains only the
difference for the base in a concise version vector. In
Cimbiosys [23], the authors suggest the use of the same
technique in a peer-to-peer system. These systems,
as they maintains only one entry per server, cannot
generate two concurrent version vectors for tagging
concurrent updates submitted to the same server from
different clients, as discussed in Section 3.

Another direction is to use unsafe space-folding
approaches that can reduce the storage and commu-
nication overhead at the expense of less accuracy of
the causality relation captured by these mechanisms.
Although devised as an alternative not to version vec-
tors but to vector clocks, plausible clocks [12] propose
techniques for condensing event counting from multi-
ple replicas over the same vector entry. The resulting
order does not contradict the causal precedence relation
but because counters are effectively shared between
processes, some concurrent events will be perceived
as causally related. In fact, the previously mentioned
Lamport clocks [5], are a notable example of plausible
clocks.

Another approach trading off less accuracy of
causality-tracking for better scalability is the hash
history mechanism [24]. It provides a directed graph
not of update operations, but of version hashes over
the state of each replica. Although independent of the
number of replicas in the system, the storage overhead
grows linearly with the number of updates. In order to
minimize this problem, it truncates the histories, prun-
ing the oldest hashes based on loosely synchronized
clocks. Use of hashes, however, can only guarantee
statistical correctness, and pruning may cause incorrect
perception of concurrency.

7. Conclusion

In this paper we have introduced dotted version vec-
tors, a novel solution for tracking causal dependencies
among update events. The base idea of our solution is
to efficiently encode the causal history of an update
performed by some client, as a version vector that
encodes the causal history of the previously observed
state and a single event identifier assigned in the server
that receives the update.

Dotted version vectors allow to accurately track
causality among updates executed by multiple clients
using information that is only linear with the number
of servers that register these updates, bounded by the
degree of replication. When compared with previously
proposed safe solutions that require information linear
with the number of clients, our solution is much more
efficient, as the number of clients tends to be several
orders of magnitude larger than the number of servers
that register updates for a given data element.

As an evidence that dotted version vectors can
be easily used in current cloud storage systems, we
have modified the Riak key-value store to integrate
our solution. Besides the definition of dotted version
vectors, approximately 100 lines of code had to be
modified.

In the future, we intend to study how the under-
lying idea of dotted version vectors can be applied to
other mechanisms to track causality, such as extending
Interval Tree Clocks [14] in order to better handle
membership changes in the set of replica nodes.

8. Acknowledgment

This work was partially founded by FCT
PTDC/EIA-EIA/104022/2008 project CASTOR.

References

[1] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels, “Dynamo: amazon’s
highly available key-value store,” in Proceedings of
twenty-first ACM SIGOPS symposium on Operating
systems principles, ser. SOSP ’07. New York, NY,
USA: ACM, 2007, pp. 205–220. [Online]. Available:
http://doi.acm.org/10.1145/1294261.1294281

[2] A. Lakshman and P. Malik, “Cassandra: a decentralized
structured storage system,” SIGOPS Oper. Syst. Rev.,
vol. 44, pp. 35–40, April 2010. [Online]. Available:
http://doi.acm.org/10.1145/1773912.1773922

[3] E. A. Brewer, “Towards robust distributed systems
(abstract),” in Proceedings of the nineteenth annual
ACM symposium on Principles of distributed
computing, ser. PODC ’00. New York, NY,
USA: ACM, 2000, pp. 7–. [Online]. Available:
http://doi.acm.org/10.1145/343477.343502

[4] S. Gilbert and N. Lynch, “Brewer’s conjecture and the
feasibility of consistent available partition-tolerant web
services,” in In ACM SIGACT News, 2002, p. 2002.

[5] L. Lamport, “Time, clocks and the ordering of events
in a distributed system,” Communications of the ACM,
vol. 21, no. 7, pp. 558–565, Jul. 1978.

[6] D. S. Parker, G. Popek, G. Rudisin, A. Stoughton,
B. Walker, E. Walton, J. Chow, D. Edwards, S. Kiser,
and C. Kline, “Detection of mutual inconsistency in
distributed systems,” Transactions on Software Engi-
neering, vol. 9, no. 3, pp. 240–246, 1983.

[7] R. Schwarz and F. Mattern, “Detecting causal relation-
ships in distributed computations: In search of the holy
grail,” Distributed Computing, vol. 3, no. 7, pp. 149–
174, 1994.

[8] M. Raynal and M. Singhal, “Logical time: Captur-
ing causality in distributed systems,” IEEE Computer,
vol. 30, pp. 49–56, Feb. 1996.

[9] Y. Saito and M. Shapiro, “Optimistic replication,”
ACM Comput. Surv., vol. 37, pp. 42–81, March
2005. [Online]. Available: http://doi.acm.org/10.1145/
1057977.1057980

[10] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi,
M. Dahlin, and M. Walfish, “Depot: Cloud storage with
minimal trust,” in OSDI 2010, Oct. 2010.

[11] D. Terry, A. Demers, K. Petersen, M. Spreitzer,
M. Theimer, and B. Welch, “Session guarantees for
weakly consistent replicated data,” in International
Conference on Parallel and Distributed Inormation
Systems, Austin, TX, US, Sep. 1994.

[12] F. J. Torres-Rojas and M. Ahamad, “Plausible clocks:
constant size logical clocks for distributed systems,”
Distributed Computing, vol. 12, no. 4, pp. 179–196,
1999.

[13] J. J. Kistler and M. Satyanarayanan, “Disconnected
operation in the Coda file system,” in Thirteenth ACM
Symposium on Operating Systems Principles, vol. 25,
Asilomar Conference Center, Pacific Grove, US, 1991,
pp. 213–225.

[14] P. S. Almeida, C. Baquero, and V. Fonte, “Interval
tree clocks,” in Proceedings of the 12th International
Conference on Principles of Distributed Systems,
ser. OPODIS ’08. Berlin, Heidelberg: Springer-
Verlag, 2008, pp. 259–274. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-92221-6 18

[15] C. Fidge, “Timestamps in message-passing systems
that preserve the partial ordering,” in 11th Australian
Computer Science Conference, 1989, pp. 55–66.

[16] F. Mattern, “Virtual time and global clocks in dis-
tributed systems,” in Workshop on Parallel and Dis-
tributed Algorithms, 1989, pp. 215–226.

[17] R. A. Golding, “A weak-consistency architecture for
distributed information services,” Computing Systems,
vol. 5, pp. 5–4, 1992.

[18] K. Petersen, M. J. Spreitzer, D. B. Terry, M. M.
Theimer, and A. J. Demers, “Flexible update propa-
gation for weakly consistent replication,” in Sixteen
ACM Symposium on Operating Systems Principles,
Saint Malo, France, Oct. 1997.

http://doi.acm.org/10.1145/1294261.1294281
http://doi.acm.org/10.1145/1773912.1773922
http://doi.acm.org/10.1145/343477.343502
http://doi.acm.org/10.1145/1057977.1057980
http://doi.acm.org/10.1145/1057977.1057980
http://dx.doi.org/10.1007/978-3-540-92221-6_18

[19] B. Charron-Bost, “Concerning the size of logical clocks
in distributed systems,” Information Processing Letters,
vol. 39, pp. 11–16, 1991.

[20] D. H. Ratner, “Roam: A scalable replication system for
mobile and distributed computing,” Ph.D. dissertation,
1998, uCLA-CSD-970044.

[21] R. Prakash and M. Singhal, “Dependency sequences
and hierarchical clocks: Efficient alternatives to vector
clocks for mobile computing systems,” Wireless Net-
works, pp. 349–360, 1997, also presented in Mobi-
com96.

[22] D. Malkhi and D. B. Terry, “Concise version vectors
in winfs,” in DISC, ser. Lecture Notes in Computer
Science, P. Fraigniaud, Ed., vol. 3724. Springer, 2005,
pp. 339–353.

[23] V. Ramasubramanian, T. L. Rodeheffer, D. B. Terry,
M. Walraed-Sullivan, T. Wobber, C. C. Marshall,
and A. Vahdat, “Cimbiosys: a platform for content-
based partial replication,” in Proceedings of the 6th
USENIX symposium on Networked systems design
and implementation. Berkeley, CA, USA: USENIX
Association, 2009, pp. 261–276. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1558977.1558995

[24] B. B. Kang, R. Wilensky, and J. Kubiatowicz, “The
hash history approach for reconciling mutual inconsis-
tency,” in Proceedings of the 23nd International Con-
ference on Distributed Computing Systems (ICDCS).
IEEE Computer Society, 2003, pp. 670–677.

http://portal.acm.org/citation.cfm?id=1558977.1558995

	1 Introduction
	2 System model
	3 Common approaches to Causality tracking
	3.1 Causally compliant total order
	3.2 Version vectors with per-server entry
	3.3 Version vectors with per-client entry

	4 A Kernel for Eventual Consistency
	4.1 Using the kernel operations

	5 Dotted Version Vectors
	5.1 Definition
	5.2 Partial order
	5.3 Update function
	5.4 Correctness

	6 Related Work
	7 Conclusion
	8 Acknowledgment
	References

